TY - CONF AU - Clark, S.E. AU - Chen, Y.-J. AU - Ellsworth, J. AU - Fetterman, A.T. AU - Melton, C.N. AU - Stem, W.D. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - Particle-in-Cell Simulations of High Current Density Electron Beams in the Scorpius Linear Induction Accelerator J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - Particle-in-cell (PIC) simulations of a high current density (I > 1 kA), and highly relativistic electron beam (E ~ 2-20 MeV) in the Scorpius Linear Induction Accelerator (LIA) are presented. The simulation set consists of a 3D electrostatic/magnetostatic simulation coupled to a 2D XY slice solver that propagates the beam through the proposed accelerator lattice for Scorpius, a next-generation flash X-ray radiography source. These simulations focus on the growth of azimuthal modes in the beam (e.g. Diocotron instability) that arise when physical ring distributions manifest in the beam either due to electron optics or solenoidal focusing and transport. The saturation mechanism appears to lead to the generation of halo particles and conversion down to lower mode numbers as the width of the ring distribution increases. The mode growth and saturation can contribute to the generation of hot spots on the target as well possible azimuthal asymmetries in the radiograph. Simulation results are compared to linear theory and tuning parameters are investigated to mitigate the growth of azimuthal modes in the Scorpius electron beam. PB - JACoW Publishing CP - Geneva, Switzerland SP - 339 EP - 342 KW - simulation KW - electron KW - emittance KW - plasma KW - induction DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-TUZE4 UR - https://jacow.org/napac2022/papers/tuze4.pdf ER -