Author: Benson, S.V.
Paper Title Page
MOPA72 Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline 206
  • A.A. Al Marzouk, P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, K.E. Deitrick, J. Guo, A. Hutton, G.-T. Park, S. Wang
    JLab, Newport News, Virginia, USA
  • D.S. Doran, G. Ha, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.E. Mitchell, J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
  Funding: NSF award PHY-1549132 to Cornell University and NIU, U.S. DOE contract DE-AC02-06CH11357 with ANL and DE-AC05-06OR23177 with JLAB.
Beamlines capable of merging beams with different energies are critical to many applications related to advanced accelerator concepts and energy-recovery linacs (ERLs). In an ERL, a low-energy "fresh" bright bunch is generally injected into a superconducting linac for acceleration using the fields established by a decelerated "spent" beam traveling on the same axis. A straight-merger system composed of a selecting cavity with a superimposed dipole magnet was proposed and recently test at AWA. This paper reports on the experimental results obtained so far along with detailed beam dynamics investigations of the merger concept and its ability to conserve the beam brightness associated with the fresh bunch.
poster icon Poster MOPA72 [1.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA72  
About • Received ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 02 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA24 pyJSPEC - A Python Module for IBS and Electron Cooling Simulation 672
  • H. Zhang, S.V. Benson, M.W. Bruker, Y. Zhang
    JLab, Newport News, Virginia, USA
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The intrabeam scattering is an important collective effect that can deteriorate the property of a high-intensity beam and electron cooling is a method to mitigate the IBS effect. JSPEC (JLab Simulation Package on Electron Cooling) is an open-source C++ program developed at Jefferson Lab, which simulates the evolution of the ion beam under the IBS and/or the electron cooling effect. The Python wrapper of the C++ code, pyJSPEC, for Python 3.x environment has been recently developed and released. It allows the users to run JSPEC simulations in a Python environment. It also makes it possible for JSPEC to collaborate with other accelerator and beam modeling programs as well as plentiful python tools in data visualization, optimization, machine learning, etc. In this paper, we will introduce the features of pyJSPEC and demonstrate how to use it with sample codes and numerical results.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA24  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 26 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)