Author: Bice, D.J.
Paper Title Page
MOPA22 Study on Electropolishing Conditions for 650 MHz Niobium SRF Cavity 97
  • V. Chouhan, D.J. Bice, F. Furuta, M. Martinello, M.K. Ng, H. Park, T.J. Ring, G. Wu
    Fermilab, Batavia, Illinois, USA
  • B.M. Guilfoyle, M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
  The PIP II linear accelerator includes different types of niobium SRF cavities including 650 MHz elliptical low (0.61) and high (0.92) beta cavities. The elliptical cavity surface is processed with the electropolishing method. The elliptical cavities especially the low-beta 650 MHz cavities showed a rough equator surface after the EP was performed with the standard EP conditions. This work was focused to study the effect of different EP parameters, including cathode surface area, temperature and voltage, and optimize them to improve the cavity surface.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA22  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 03 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEZE4 First High-Gradient Results of UED/UEM SRF Gun at Cryogenic Temperatures 607
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • D.J. Bice, T.N. Khabiboulline, S. Posen
    Fermilab, Batavia, Illinois, USA
  Funding: The project is funded by DOE SBIR #DE-SC0018621
Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, we present first high gradient results of the gun conducted in liquid helium.
slides icon Slides WEZE4 [2.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZE4  
About • Received ※ 05 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)