Author: Cousineau, S.M.
Paper Title Page
WEYE5 Model/Measurement Comparison of the Transverse Phase Space Distribution of an RFQ-Generated Bunch at the SNS BTF 584
 
  • K.J. Ruisard, A.V. Aleksandrov, S.M. Cousineau, A.M. Hoover, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work is supported by US DOE, Office of Science, HEP. This manuscript is authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with US DOE.
The research program at the SNS Beam Test Facility is focused on resolving observed model/measurement discrepancies that preclude accurate loss prediction in high-power linacs. The current program of study is focused on deploying direct 6D measurements to reconstruct a realistic model of the initial beam distribution at the RFQ output. This detailed characterization also provides an opportunity for benchmark of RFQ simulations. Here we compare PARMTEQ predictions against 5D-resolved (x, x’, y, y’, dE) phase space measurements of the BTF H bunch, focusing on the transverse distribution. This work is an extension of [1], which focused on the longitudinal phase space.
[1] K. Ruisard et al., doi: 10.1103/PhysRevAccelBeams.23.124201.
[2] A. Hoover et al., "Measurements of the Five-Dimensional Phase Space Distribution of a High-Intensity Ion Beam," these proceedings.
 
slides icon Slides WEYE5 [2.646 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE5  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA33 Laser Stripping for 1.3 GeV H Beam at the SNS 702
 
  • T.V. Gorlov, A.V. Aleksandrov, S.M. Cousineau, Y. Liu, A.R. Oguz
    ORNL, Oak Ridge, Tennessee, USA
  • M.J. Kay
    UTK, Knoxville, Tennessee, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  Funding: This work has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
A realistic full duty factor laser stripping charge exchange injection scheme for future 1.3 GeV beam at the SNS is considered. Different schemes of laser stripping involving combinations of photoexcitation, photoionization and magnetic field stripping are calculated. The laser power and magnetic field strength needed for different approaches are estimated and compared. The most practical scheme of laser stripping is selected for development.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA33  
About • Received ※ 29 July 2022 — Revised ※ 05 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 23 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA38 Progress on Machine Learning for the SNS High Voltage Converter Modulators 715
 
  • M.I. Radaideh, S.M. Cousineau, D. Lu
    ORNL, Oak Ridge, Tennessee, USA
  • T.J. Britton, K. Rajput, M. Schram, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
  • G.C. Pappas, J.D. Walden
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  The High-Voltage Converter Modulators (HVCM) used to power the klystrons in the Spallation Neutron Source (SNS) linac were selected as one area to explore machine learning due to reliability issues in the past and the availability of large sets of archived waveforms. Progress in the past two years has resulted in generating a significant amount of simulated and measured data for training neural network models such as recurrent neural networks, convolutional neural networks, and variational autoencoders. Applications in anomaly detection, fault classification, and prognostics of capacitor degradation were pursued in collaboration with the Jefferson Laboratory, and early promising results were achieved. This paper will discuss the progress to date and present results from these efforts.  
poster icon Poster WEPA38 [1.320 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA38  
About • Received ※ 25 July 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 03 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXD3 Measurements of the Five-Dimensional Phase Space Distribution of an Intense Ion Beam 910
 
  • A.M. Hoover, A.V. Aleksandrov, S.M. Cousineau, K.J. Ruisard, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics; authored by UT- Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
No simulation of intense beam transport has accurately reproduced measurements at the level of beam halo. One potential explanation of this discrepancy is a lack of knowledge of the initial distribution of particles in six-dimensional (6D) phase space. A direct 6D measurement of an ion beam was recently performed at the Spallation Neutron Source (SNS) Beam Test Facility (BTF), revealing nonlinear transverse-longitudinal correlations in the beam core that affect downstream evolution. Unfortunately, direct 6D measurements are limited in resolution and dynamic range; here, we discuss the use of three slits and one screen to measure a 5D projection of the 6D phase space distribution, overcoming these limitations at the cost of one dimension. We examine the measured 5D distribution before and after transport through the BTF and compare to particle-in-cell simulations. We also discuss the possibility of reconstructing the 6D distribution from 5D and 4D projections.
 
slides icon Slides FRXD3 [4.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-FRXD3  
About • Received ※ 03 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 02 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)