Author: Fisher, A.C.
Paper Title Page
MOZD2 Preliminary Study of a High Gain THz FEL in a Recirculating Cavity 30
 
  • A.C. Fisher, P. Musumeci
    UCLA, Los Angeles, USA
 
  The THz gap is a region of the electromagnetic spectrum where high average and peak power radiation sources are scarce while at the same time scientific and industrial applications are growing in demand. Free-electron laser coupling in a magnetic undulator is one of the best options for radiation generation in this frequency range, but slippage effects require the use of relatively long and low current electron bunches to drive the THz FEL, limiting amplification gain and output peak power. Here we use a circular waveguide in a 0.96 m strongly tapered helical undulator to match the radiation and e-beam velocities, allowing resonant energy extraction from an ultrashort 200 pC 5.5 MeV electron beam over an extended distance. E-beam energy measurements, supported by energy and spectral measurement of the THz FEL radiation, indicate an average energy efficiency of ~ 10%, with some particles losing > 20% of their initial kinetic energy.  
slides icon Slides MOZD2 [7.005 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOZD2  
About • Received ※ 04 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 06 August 2022 — Issue date ※ 13 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA44 Compact Inter-Undulator Diagnostic Assembly for TESSA-515 732
 
  • T.J. Hodgetts, R.B. Agustsson, Y.C. Chen, A.Y. Murokh, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • P.E. Denham, A.C. Fisher, J. Jin, P. Musumeci, Y. Park
    UCLA, Los Angeles, USA
 
  Funding: DOE grant DE-SC0009914, DE-SC0018559, and DE-SC0017102.
Beamline space is a very expensive and highly sought-after commodity, which makes the creation of compact integrated optics and diagnostics extremely valuable. The FAST- GREENS experimental program aims at demonstrating 10 % extraction efficiency from a relativistic electron beam using four helical undulators operating in the high gain TESSA regime. The inter-undulator gap needs to be as short as possible (17 cm in the current plans) to maximize the output power. Within this short distance, we needed to fit two focusing quadrupoles, a variable strength phase shifter, a transverse profile monitor consisting of a YAG-OTR combination for co-aligning the electron beam and laser, and an ion pump. By making the quadrupoles tunable with a variable gradient, in combination with vertical displacement, we can meet the optics requirements of matching the beam transversely to the natural focusing of the undulators. The two quadrupoles in conjunction with the electromagnetic dipole also serve as a phase shifter to realign the radiation and the bunching before each undulator section. This paper will discuss the mechanical design of this inter-undulator break section and its components.
 
poster icon Poster WEPA44 [0.752 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA44  
About • Received ※ 27 July 2022 — Revised ※ 03 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 11 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)