Author: Khabiboulline, T.N.
Paper Title Page
MOPA23 Tests of the Extended Range SRF Cavity Tuners for the LCLS-II HE Project 100
  • C. Contreras-Martinez, T.T. Arkan, A.T. Cravatta, B.D. Hartsell, J.A. Kaluzny, T.N. Khabiboulline, Y.M. Pischalnikov, S. Posen, G.V. Romanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  The LCLS-II HE superconducting linac will produce multi-energy beams by supporting multiple undulator lines simultaneously. This could be achieved by using the cavity SRF tuner in the off-frequency detune mode. This off-frequency operation method was tested in the verification cryomodule (vCM) and CM 1 at Fermilab at 2 K. In both cases, the tuners achieved a frequency shift of -565±80 kHz. This study will discuss cavity frequency during each step as it is being assembled in the cryomodule string and finally when it is being tested at 2 K. Tracking the cavity frequency helped enable the tuners to reach this large frequency shift. The specific procedures of tuner setting during assembly will be presented.  
poster icon Poster MOPA23 [0.654 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA23  
About • Received ※ 03 August 2022 — Revised ※ 11 August 2022 — Accepted ※ 19 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPA27 Validation of the 650 MHz SRF Tuner on the Low and High Beta Cavities for PIP-II at 2 K 109
  • C. Contreras-Martinez, S.K. Chandrasekaran, S. Cheban, G.V. Eremeev, I.V. Gonin, T.N. Khabiboulline, Y.M. Pischalnikov, O.V. Prokofiev, A.I. Sukhanov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  The PIP-II linac will include thirty-six BG=0.61 and twenty-four BG=0.92 650 MHz 5 cell elliptical SRF cavities. Each cavity will be equipped with a tuning system consisting of a double lever slow tuner for coarse frequency tuning and a piezoelectric actuator for fine frequency tuning. The same tuner will be used for both the BG=0.61 and BG=0.92 cavities. Results of testing the cavity-tuner system for the BG=0.61 will be presented for the first time.  
poster icon Poster MOPA27 [0.782 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA27  
About • Received ※ 03 August 2022 — Revised ※ 10 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 04 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEZE4 First High-Gradient Results of UED/UEM SRF Gun at Cryogenic Temperatures 607
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • D.J. Bice, T.N. Khabiboulline, S. Posen
    Fermilab, Batavia, Illinois, USA
  Funding: The project is funded by DOE SBIR #DE-SC0018621
Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, we present first high gradient results of the gun conducted in liquid helium.
slides icon Slides WEZE4 [2.817 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEZE4  
About • Received ※ 05 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 29 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)