Author: Li, Y.
Paper Title Page
Chromatic Correction of the EIC Electron Ring Lattice  
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, F.J. Willeke
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  We have developed a new chromatic compensation scheme for the electron storage ring with two low-beta interaction regions in the electron-ion collider. The hybrid scheme consists of modular chromatic matching of periodic systems and beamlines. The first-order chromatically matched solutions are linearly parameterized with the local linear chromaticities that control the higher order chromatic beatings. The parameterization enables an efficient optimization of dynamic aperture. As a result, we successfully achieve the 1% design criterion for the momentum aperture in the ring.  
slides icon Slides MOYD6 [1.667 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA71 Unified Orbit Feedback at NSLS-II 795
  • Y. Hidaka, Y. Li, R.M. Smith, Y. Tian, G.M. Wang, X. Yang
    BNL, Upton, New York, USA
  Funding: This work is supported by U.S. DOE under Contract No. DE-SC0012704.
We have developed an orbit correction / feedback program to unify the existing orbit-related feedback systems for stable beam operation at NSLS-II. Until recently only a handful of beamlines have been benefiting from long-term orbit stability provided by a local bump agent program. To expand this to all the beamlines as well as correct more frequently, a new slow orbit feedback program called unified orbit feedback (UOFB) was written from scratch that works with the fast orbit feedback transparently, while accumulated fast corrector strength is continuously shifted to the slow correctors and RF frequency is adjusted for circumference change. UOFB can lock 3 different types of local bumps to the target offsets/angles for days: those for insertion device (ID) sources with only ID RF beam position monitors (BPM) or mixtures of ID RF BPMs and X-ray BPMs, and those for bending magnet sources with arc BPMs between which orbit correctors, dipoles and quadrupoles exist. Furthermore, this feed-back can accommodate beamline user requests to enable / disable the feedback loop for their beamline and to change bump target setpoints without turning off the loop.
poster icon Poster WEPA71 [2.541 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA71  
About • Received ※ 02 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 12 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA74 Characterization of Fully Coupled Linear Optics with Turn-by-Turn Data 805
  • Y. Li, R.S. Rainer, V.V. Smaluk
    BNL, Upton, New York, USA
  Funding: This research used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.
In the future diffraction-limited light source rings, fully coupled linear optics to generate round beams is preferable. While machine tune approaching to linear difference resonances, small random errors, such as quadrupole rolls, can result in fully coupled optics. Consequently, some uncertainty exists in such optics due to random errors distributions. Given beam position monitors turn-by-turn readings, the harmonic analysis method was used to characterize the coupled Ripken Twiss parameters.
poster icon Poster WEPA74 [0.889 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA74  
About • Received ※ 25 July 2022 — Revised ※ 30 July 2022 — Accepted ※ 08 August 2022 — Issue date ※ 19 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA81 Time-Resolved Experiments at NSLS II: Motivation and Machine Capabilities 826
  • G.M. Wang, B. Bacha, G. Bassi, G.L. Carr, Y. Hidaka, Y. Hu, Y. Li, C. Mazzoli, D. Padrazo Jr, R.S. Rainer, J. Rose, J.T. Sadowski, V.V. Smaluk, Y. Tian, L. Wiegart, G. Williams, X. Yang
    BNL, Upton, New York, USA
  NSLS-II is a 3-GeV third-generation synchrotron light source at Brookhaven National Lab. The storage ring has been in routine operations for over six years and hosts 28 operating beamlines. The storage ring performance has continuously improved, including 500-mA with limited insertion devices closed, and routine 400-mA top off operation with 90% uniform filling pattern. Recently, we are exploring different operation modes, uniform multi single-bunch mode, and camshaft mode with a high single-bunch charge, to support timing-resolved user experiments. In this paper, we explore the potential for scientific experiments using the pulsed nature of the NSLS, summarize the user requirements on the beam parameters and the progress of accelerator studies.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA81  
About • Received ※ 04 August 2022 — Revised ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 22 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)