Author: Lorch, C.D.
Paper Title Page
TUPA85 First Results from a Multileaf Collimator and Emittance Exchange Beamline 531
  • N. Majernik, G. Andonian, C.D. Lorch, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, S.Y. Kim, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  Funding: Department of Energy DE-SC0017648 and National Science Foundation PHY-1549132.
By shaping the transverse profile of a particle beam prior to an emittance exchange (EEX) beamline, drive and witness beams with variable current profiles and bunch spacing can be produced. Presently at AWA, this transverse shaping is accomplished with individually laser-cut tungsten masks, making the refinement of beam profiles a slow process. In contrast, a multileaf collimator (MLC) is a device that can selectively mask the profile of a beam using many independently actuated leaves. Since an MLC permits real-time adjustment of the beam shape, its use as a beam mask would permit much faster optimization in a manner highly synergistic with machine learning. Beam dynamics simulations have shown that such an approach is functionally equivalent to that offered by the laser cut masks. In this work, the construction and first results from a 40-leaf, UHV compatible MLC are discussed.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA85  
About • Received ※ 16 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 12 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)