Author: Nasr, M.H.
Paper Title Page
MOZE1
Demonstration of High-Gradient in a Cryo-Cooled X-Band Structure  
 
  • M.H. Nasr
    SLAC, Menlo Park, California, USA
 
  We present an experimental demonstration of the high-gradient operation of an X-band, 11.424 GHz, 20-cells linear accelerator (linac) operating at a liquid nitrogen temperature of 77 K. The tested linac was previously processed and tested at room temperature. Low-temperature operation increases the yield strength of the accelerator material and reduces surface resistance, hence a great reduction in cyclic fatigue could be achieved resulting in a large reduction in breakdown rates compared to room- temperature operation. Furthermore, temperature reduction increases the intrinsic quality factor of the accelerating cavities, and consequently, the shunt impedance leading to increased RF-to-beam efficiency and beam loading capabilities. We verified the enhanced accelerating parameters of the tested accelerator at cryogenic temperature using different measurements including electron beam acceleration up to a gradient of 150 MV/m, corresponding to a peak surface electric field of 375 MV/m. We also measured the breakdown rates in the tested structure showing a reduction of 2 orders of magnitude compared to their values at room temperature for the same accelerating gradient.  
slides icon Slides MOZE1 [6.217 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)