Author: Reeves, G.D.
Paper Title Page
TUPA74 Numerical Calculations of Wave Generation from a Bunched Electron Beam in Space 502
  • H. Xu, G.L. Delzanno, L.D. Duffy, Q.R. Marksteiner, G.D. Reeves
    LANL, Los Alamos, New Mexico, USA
  Funding: This project was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory.
We present our numerical approach and preliminary results of the calculations of whistler and X-mode wave generation by a bunched electron beam in space. The artificial generation of whistler and X-mode plasma waves in space is among the candidate techniques to accomplish the radiation belt remediation (RBR), in an effort to precipitate energetic electrons towards the atmosphere to reduce their threat to low-Earth orbit satellites. Free-space propagation of an electron pulse in a constant background magnetic field was simulated with the CST particle-in-cell (PIC) solver, with the temporal evolution of the beam recorded. The SpectralPlasmaSolver (SPS) was then modified to use the recorded electron pulse propagation to calculate the real-time plasma waves generated by the beam. SPS simulation results of the wave generation for the upcoming Beam-PIE experiment as well as an ideal bunched electron beam are shown.
poster icon Poster TUPA74 [0.963 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA74  
About • Received ※ 18 July 2022 — Revised ※ 02 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 08 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)