Author: Ruan, J.
Paper Title Page
Demonstration of Optical Stochastic Cooling in an Electron Storage Ring  
  • J.D. Jarvis, D.R. Broemmelsiek, K. Carlson, D.R. Edstrom, V.A. Lebedev, S. Nagaitsev, H. Piekarz, A.L. Romanov, J. Ruan, J.K. Santucci, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • S. Chattopadhyay, A.J. Dick, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • I. Lobach
    University of Chicago, Chicago, Illinois, USA
  Optical stochastic cooling (OSC), proposed nearly thirty years ago, replaces the conventional microwave elements of stochastic cooling (SC) with optical-frequency analogs, such as undulators, optical lenses and optical amplifiers. Here we discuss the first experimental observation of OSC, which was performed at the Fermi National Accelerator Laboratory’s Integrable Optics Test Accelerator (IOTA) with 100-MeV electrons and a radiation wavelength of 950 nm. The experiment employed a non-amplified configuration of OSC and achieved a longitudinal damping rate close to one order of magnitude larger than the beam’s natural damping due to synchrotron radiation. The integrated system demonstrated sub-femtosecond stability and a bandwidth of ~20 THz, a factor of ~2000-times higher than conventional microwave SC systems. Coupling to the transverse planes enabled simultaneous cooling of the beam in all degrees of freedom. This first demonstration of SC at optical frequencies serves as a foundation for more advanced experiments with high-gain optical amplification and advances opportunities for future operational OSC systems at colliders and other accelerator facilities.  
slides icon Slides FRXD1 [32.041 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)