Author: Tsung, F.S.
Paper Title Page
Highly Spin-Polarized Multi-GeV Sub-Femtosecond Electron Beams Generated From Single-Species Plasma Photocathodes  
  • Z. Nie, C. Joshi, F. Li, K.A. Marsh, D. Matteo, W.B. Mori, N. Nambu, F.S. Tsung, Y.P. Wu, C. Zhang
    UCLA, Los Angeles, California, USA
  • W. An
    BNU, Haidian District Beijing, People’s Republic of China
  • F. Morales, S. Patchkovskii, O. Smirnova
    MBI, Berlin, Germany
  Funding: DOE Grant No. DE-SC0010064; DOE through a SciDAC FNAL Subcontract No. 644405; NSF Grants No. 1734315, No. 1806046 and No. 2108970; ONR MURI (4-442521-JC-22891); and NSFC Grant No. 12075030
High-gradient and high-efficiency acceleration in plasma-based accelerators has been demonstrated, showing its potential as the building block for a future collider operating at the energy frontier of particle physics. However, generating and accelerating the required spin-polarized beams in such a collider using plasma-based accelerators has been a long-standing challenge. Here we show that the passage of a highly relativistic, high-current electron beam through a single-species (ytterbium) vapor excites a nonlinear plasma wake by primarily ionizing the two outer 6s electrons. Further photoionization of the resultant Yb2+ ions by a circularly polarized laser injects the 4f14 electrons into this wake generating a highly spin-polarized beam. Combining time-dependent Schrodinger equation simulations with particle-in-cell simulations, we show that a sub-femtosecond, high-current (4 kA) electron beam with up to 56% net spin polarization can be generated and accelerated to 15 GeV in just 41 cm. This relatively simple scheme solves the perplexing problem of producing spin-polarized relativistic electrons in plasma-based accelerators.
slides icon Slides WEYD5 [2.323 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)