Author: Xu, T.
Paper Title Page
MOPA72 Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline 206
  • A.A. Al Marzouk, P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  • S.V. Benson, K.E. Deitrick, J. Guo, A. Hutton, G.-T. Park, S. Wang
    JLab, Newport News, Virginia, USA
  • D.S. Doran, G. Ha, P. Piot, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.E. Mitchell, J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
  Funding: NSF award PHY-1549132 to Cornell University and NIU, U.S. DOE contract DE-AC02-06CH11357 with ANL and DE-AC05-06OR23177 with JLAB.
Beamlines capable of merging beams with different energies are critical to many applications related to advanced accelerator concepts and energy-recovery linacs (ERLs). In an ERL, a low-energy "fresh" bright bunch is generally injected into a superconducting linac for acceleration using the fields established by a decelerated "spent" beam traveling on the same axis. A straight-merger system composed of a selecting cavity with a superimposed dipole magnet was proposed and recently test at AWA. This paper reports on the experimental results obtained so far along with detailed beam dynamics investigations of the merger concept and its ability to conserve the beam brightness associated with the fresh bunch.
poster icon Poster MOPA72 [1.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA72  
About • Received ※ 11 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 02 October 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPA78 Temporally-Shaped Ultraviolet Pulses for Tailored Bunch Generation at Argonne Wakefield Accelerator 222
  • T. Xu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Carbajo
    UCLA, Los Angeles, California, USA
  • S. Carbajo, R.A. Lemons
    SLAC, Menlo Park, California, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
  Photocathode laser shaping is an appealing technique to generate tailored electron bunches due to its versatility and simplicity. Most photocathodes require photon energies exceeding the nominal photon energy produced by the lasing medium. A common setup consists of an infrared (IR) laser system with nonlinear frequency conversion to the ultraviolet (UV). In this work, we present the numerical modeling of a temporal shaping technique capable of producing electron bunches with linearly-ramped current profiles for application to collinear wakefield accelerators. Specifically, we show that controlling higher-order dispersion terms associated with the IR pulse provides some control over the UV temporal shape. Beam dynamics simulation of an electron-bunch shaping experiment at the Argonne Wakefield Accelerator is presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA78  
About • Received ※ 01 August 2022 — Revised ※ 06 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 31 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPA83 Derivative-Free Optimization of Multipole Fits to Experimental Wakefield Data 523
  • N. Majernik, G. Andonian, W.J. Lynn, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • P. Piot, T. Xu
    Northern Illinois University, DeKalb, Illinois, USA
  Funding: Department of Energy DE-SC0017648.
A method to deduce the transverse self-wakefields acting on a beam, based only on screen images, is introduced. By employing derivative-free optimization, the relatively high-dimensional parameter space can be efficiently explored to determine the multipole components up to the desired order. This technique complements simulations, which are able to directly infer the wakefield composition. It is applied to representative simulation results as a benchmark and also applied to experimental data on skew wake observations from dielectric slab structures.
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA83  
About • Received ※ 02 August 2022 — Revised ※ 21 August 2022 — Accepted ※ 26 August 2022 — Issue date ※ 11 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)