Keyword: hardware
Paper Title Other Keywords Page
MOPA30 LCLS-II BCS Average Current Monitor cavity, electron, MMI, LLRF 120
  • N.M. Ludlow, T.L. Allison, J.P. Sikora, J.J. Welch
    SLAC, Menlo Park, California, USA
  LCLS-II is a 4th generation light source at the SLAC National Accelerator Laboratory. LCLS-II will accelerate a 30 µA electron beam with a 1 MHz bunch rate with a new superconducting Continuous Waveform (CW) RF accelerator. The Average Current Monitor (ACM) is part of the Beam Containment System (BCS) for the LCLS-II accelerator. The Beam Containment System is a safety system that provides paths to safely shut the accelerator beam off under a variety of conditions. The Average Current Monitor is a beam diagnostic within the BCS that is used to verify that the accelerator is producing the appropriate current level and to limit beam power to allowed values to protect the machine and beam dumps. The average beam current is obtained by measuring the power level induced by the beam in a low Q cavity. By knowing the Q, the beta, and the coupling of the cavity, the instantaneous charge can be calculated, then integrating the instantaneous charge over one millisecond will yield the average current. This paper will discuss progress in the checkout process of the ACM LLRF hardware leading to LCLS-II commissioning.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA30  
About • Received ※ 16 July 2022 — Revised ※ 05 August 2022 — Accepted ※ 24 August 2022 — Issue date ※ 06 October 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPA19 HE Production Update at JLab - Introducing an Enhanced Nitrogen Purge for Clean String Assembly cavity, controls, cryomodule, vacuum 659
  • P.D. Owen
    JLab, Newport News, Virginia, USA
  A major limitation to cryomodule performance is field emission caused by particulates within the superconducting cavities. To reduce contamination of the inner surfaces during assembly in a cleanroom, the whole string can be connected to a purge system, which maintains a constant overpressure of dry, clean nitrogen gas. Following successes of similar systems at XFEL and Fermilab, Jefferson Lab followed this example for the production of LCLS-II HE cryomodules. Implementing this system required new procedures, infrastructure, and hardware, as well as significant testing of the system before production began. This paper will summarize the implemented controls and procedures, including lessons learned from Fermilab, as well as the results of mock-up tests. Based on the latter, the system was used to assemble the first article string in April 2022, and was also used during a rework required due to issues with cold FPC ceramics two months later. The benefits of using a purge system with regards to procedure, time savings, and added flexibility for potential rework have already proven to provide a significant improvement for the production of LCLS-II-HE cryomodules at Jefferson Lab.  
poster icon Poster WEPA19 [1.538 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA19  
About • Received ※ 02 August 2022 — Revised ※ 08 August 2022 — Accepted ※ 11 August 2022 — Issue date ※ 21 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)