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Abstract
Flat beams are preferred in high-intensity accelerators and

high-energy colliders due to one of the transverse plane emit-
tances being much smaller than the other, which enhances
luminosity and beam brightness. However, flat beams are
not desirable at low energies due to space charge forces
which are significantly enhanced in one plane. The same is
true, although to a lesser degree, for non-symmetric ellipti-
cal beams. To mitigate this effect and enable flat beams at
higher energies, circular mode beam optics can be used. In
this paper, we show that circular mode beams offer better
control of space charge effects at lower energies and can be
transformed into flat beams at higher energies.

INTRODUCTION
High-energy colliders and storage rings require high colli-

sion luminosity and beam brightness for future scientific dis-
coveries and applications. Flat beams could enable this need
because one of the transverse beam sizes is much smaller,
which enhances luminosity and beam brightness. However,
at low energy, flat beams can’t sustain high beam currents
due to space charge effects which cause tune shifts and un-
stable motion. To mitigate these effects, flat beams can be
propagated as circular mode beams through the lattice while
maintaining intrinsic flatness through coupling, then con-
verted to flat beams at high energy. The original idea of cir-
cular modes was introduced by Derbenev [1] for an electron
cooling experiment at Fermilab. Their theory was further
developed by Burov et al. [2]. Burov also proposed circular
modes for high-energy colliders to produce flat beams for
luminosity enhancement [3]. Recently, there has been sig-
nificant interest in beams with non-zero angular momentum,
they are proposed to mitigate space charge, either in self-
consistent distributions [4] or in hollow rotating beams [5].

In this work, we have developed different lattice designs
for low-energy high-intensity beams that are capable of prop-
agating and maintaining circular mode beams. We will look
at circular modes formed by skew triplet transformation
(adapter) of Gaussian distributions in periodic lattices and
evaluate space charge tune shift performance at high current
using two simulation codes WARP [6] and TRACK [7].

THEORY
The theory of circular modes is well-understood and dis-

cussed in Ref. [2]. There are multiple ways to create circular
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Figure 1: (a) Flat beam, (b) after adapter, circular mode.

modes. One of them, as presented in Refs. [1, 2, 8], is to use
a skew quadrupole triplet. The skew triplet transforms a flat
beam into a round circular-mode beam, as shown in Fig. 1.
Here, the color depicts transverse momentum strength, and
the arrows show the direction of the particle motion in the
transverse plane. We clearly see that transforming a flat
beam into a circular mode decreases the beam size in 𝑥

and increase it in 𝑦, leading to a round beam with non-zero
canonical angular momentum.

The canonical angular momentum of the beam is given by
𝐿z = 𝜖I − 𝜖II [2], where 𝜖I,II are the eigenmode emittances,
with the skew triplet transforming the initial emittances 𝜖x →
𝜖I and 𝜖y → 𝜖II. In Ref. [2], these eigen-emittances are
called 𝜖+ and 𝜖− corresponding to the opposite directions of
rotation. Because of the coupling, the eigenmode emittances
are conserved rather than the 2𝐷 phase space emittances
𝜖x,y. The skew triplet transformation and mapping can be
found in Refs. [2, 8] where the vertical degrees of freedom
are coupled to the horizontal degrees of freedom using a
vortex condition.

Since a circular mode beam is strongly coupled, the state
of the system should be considered in terms of coupled
beam optics using Mais-Ripken parametrization [9] or its
further development by Lebedev et al. [10]. The optics can
be characterized using the eigenvectors of the system:
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Here, 𝛽jl, 𝛼jl, 𝑢, 𝜈l are the beta functions, alpha functions,
coupling parameter, and coupling phases, respectively, with
𝑗 𝜖 (x,y) and 𝑙 𝜖 (I,II). Circular modes produced using an
adapter have a special one-to-one transformation because
upon calculation of coupled optics functions, one finds that
𝛽𝑥I = 𝛽𝑥II = 𝛽𝑦I = 𝛽𝑦II = 𝛽0 and 𝛼𝑥I = 𝛼𝑥II = 𝛼𝑦I =

𝛼𝑦II = 0. Additionally, there is a circular beta function for
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which the one-to-one transformation matches the planar beta
function to the circular beta function. With this knowledge,
it is straightforward to show that 𝛽0 = 𝛽c/2, where 𝛽c is the
circular beta function. The eigenvectors are normalized with
respect to the symplectic unit matrix, ®𝑣†I,II𝑆®𝑣I,II = −2𝑖, where
𝑆 is the symplectic unit matrix. The phase space vector can
be written as:

®𝑧 = 1
2
√
𝜖I ®𝑣I𝑒

𝑖𝜓I + 1
2
√
𝜖II ®𝑣II𝑒

𝑖𝜓II + complex conjugate. (2)

Confining the phase space coordinates to a rotating circle
allows the polar coordinate representation: 𝑥 = 𝑟 cos 𝜃 and
𝑦 = 𝑟 sin 𝜃. Applying Courant-Snyder-like formalism [11]
will yield the circular optics in the rotating frame with the
circular optics function 𝛽c. Implementing the conditions on
the phase space vector will result in the vortex condition:(

𝑦

𝑦′

)
=

(
0 1/𝛽𝑐

−𝛽𝑐 0

) (
𝑥

𝑥′

)
. (3)

To get the same condition as in Eq. (3), the phase space
vector can be solved to match the vortex condition. This
in return will yield the coupling parameters 𝑢 = 1

2 and
𝜈I,II = 𝜋/2. With one condition that 𝜖II << 𝜖I, which is
true for flat beams and hence circular modes, the eigenmode
emittances can be found using the normalization condition
and phase space vector, 𝜖I,II = |®𝑣†I,II𝑆®𝑧 |

2.

𝜖I,II =
𝑥2

4𝛽0
+ 𝑥′2𝛽0 +

𝑦2

4𝛽0
+ 𝑦′2𝛽0 ± 𝐿𝑧 , (4)

where 𝐿z = 𝜖I − 𝜖II. Furthermore, beam sizes can be calcu-
lated from the coupled optics functions:

𝜎2
𝑥 = 𝜖I𝛽𝑥I + 𝜖II𝛽𝑥II,

𝜎2
𝑦 = 𝜖I𝛽𝑦I + 𝜖II𝛽𝑦II.

(5)

For circular modes, 𝜖II << 𝜖I. Here the beam sizes can
be determined from

𝜎2
𝑥 = 𝜖I𝛽0 (1 + 𝜖II/𝜖I),

𝜎2
𝑦 = 𝜖I𝛽0 (1 + 𝜖II/𝜖I),

(6)

where 𝜎x,y are the beam rms sizes. Eq. (6) indicates that the
beam cross-section is circular. Since the coupling parameter
𝑢 = 1/2, which can also be rewritten as 𝑢 = 𝜖x/𝜖I, where
𝜖x,y are the apparent emittances, 𝜖x = 𝜖I/2 and 𝛽0 = 𝛽c/2.
Therefore, beam sizes can be written as 𝜎2

x,y = 𝛽c𝜖x. In other
words, a circular mode beam will act as if it is an uncoupled
round beam.

Angular Momentum Preservation
Once a circular mode beam is created, it needs to be prop-

agated through the lattice. This can be ensured by preserv-
ing the canonical angular momentum (CAM). To preserve
CAM, a magnet must have a longitudinal magnetic field,
which means a solenoidal field. However, solenoid focusing
is not efficient at relatively higher energies and requires very

Figure 2: (a) Normal quadrupole doublet with normal dipole,
(b) normal quadrupole triplet.

strong fields. Other elements or combinations of elements
should be used for beam transport. As shown in Ref. [2], the
most general form of the 4× 4 transfer matrix that preserves
CAM is given by

M = 𝑅(𝜃)
(
𝑇 0
0 𝑇

)
, (7)

where 𝑅 is a 4 × 4 rotation matrix with angle 𝜃, and 𝑇 is a
2 × 2 transverse focusing matrix which is the same in both
planes. In other words, to preserve angular momentum, the
effective transfer matrix should have symmetric effective
focusing in both planes. Among the systems that preserve
CAM are the following:

• solenoids,
• indexed dipoles (𝑛 = 1/2),
• normal quadrupole doublets,
• normal quadrupole triplets,
• normal quadrupole doublets with normal dipoles,
• skew quadrupole doublets.

Normal quadrupole systems can be arranged in a mirror-
symmetric fashion to produce equal effective focusing in
both planes. The extra condition on the system is that phase
advances in both planes should be equal. If phase advances
of the system in both planes are not equal, the system does
not conserve the circular mode. Mirror-symmetric systems
based on normal quadrupoles can be seen in Fig. 2. In
this case, the transformation to circular mode is performed
using three skew quadrupoles (adapter), then the beam is
transported through a normal quadrupole system.

Systems with mirror symmetry break angular momentum
at the entrance and restore it at the end since there are no
continuous longitudinal magnetic fields. CAM has to be
preserved before transforming circular mode back into a flat
beam. If systems can not supply equal phase advances and
beta functions, the beam will still have rotational motion but
will turn into a tilted ellipse (elliptic modes). The advantage
of a doublet system with normal dipoles in between is that it
allows us to form a ring without the need for indexed dipoles.

Space Charge Effect and Circular Modes
Space charge is mainly an issue at the low-energy stages

of acceleration. There are limitations on how much current
can be stored due to tune shift and emittance blow-up. The
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strength of space charge is given by the perveance parameter
𝜅SC:

𝜅SC =
𝑒𝐼

2𝜋𝜖0𝑚0𝑐3𝛽3𝛾3 , (8)

where 𝑒 is the charge of the particle, 𝐼 the current, 𝜖0 the
permitivitty of free space, 𝑚0 the mass of the particle, 𝑐
the speed of light, 𝛽 and 𝛾 the relativistic parameters. It is
easy to see the dependence on the relativistic parameters
as 1/(𝛽𝛾)3, which means the faster we increase the energy
the smaller the perveance is. The Coulomb field depends
heavily on the size and density of the beam. Since space
charge typically has the effect of a defocusing quadrupole,
it can be treated as a perturbation. In the case of uncoupled
dynamics, space charge tune shift has the form:

Δ𝑄𝑥 = − 𝜅SC
4𝜋

∮
𝛽𝑥

𝜎𝑥 (𝜎𝑥 + 𝜎𝑦)
𝑑𝑠,

Δ𝑄𝑦 = − 𝜅SC
4𝜋

∮
𝛽𝑦

𝜎𝑦 (𝜎𝑥 + 𝜎𝑦)
𝑑𝑠,

(9)

where Δ𝑄x is the tune shift in 𝑥. In the case of coupled
dynamics, the theory of tune shift as a perturbation was
developed in Ref. [12]:

Δ𝑄I =
1

4𝜋
(𝑃𝑥𝛽𝑥I + 𝑃𝑦𝛽𝑦I + 2𝑃𝑥𝑦

√︁
𝛽𝑥I𝛽𝑦I cos 𝜈I),

Δ𝑄II =
1

4𝜋
(𝑃𝑥𝛽𝑥II + 𝑃𝑦𝛽𝑦II + 2𝑃𝑥𝑦

√︁
𝛽𝑥II𝛽𝑦II cos 𝜈II).

Since there is coupling, we talk about modes I and II in-
stead of 𝑥 and 𝑦. 𝑃x, 𝑃y and 𝑃xy are perturbations in 𝑥, 𝑦 or
coupled perturbations like skew-quadrupole errors. These
equations can be used to calculate the tune shifts for space-
charge since the effect is like a defocusing quadrupole per-
turbation. This allows us to use Eq. (8), but the perturbation
in 𝑥 and 𝑦 depends on the beam distribution, and the tune
shift will be similar to Eq. (9) once it is integrated out for
the full system.

For circular modes, we established the relations with cou-
pled optics parameters, and 𝑃xy is zero since it arises from
tilted ellipse cross-sections; in addition, a circular mode
system has 𝜈 = 𝜋/2, so the cross-terms vanish:

Δ𝑄I =
1

4𝜋
(𝑃𝑥 + 𝑃𝑦)𝛽0, Δ𝑄II =

1
4𝜋

(𝑃𝑥 + 𝑃𝑦)𝛽0. (10)

The perturbations for a Gaussian beam are 𝑃𝑥 =

𝜅SC/𝜎𝑥 (𝜎𝑥 + 𝜎𝑦) and 𝑃𝑦 = 𝜅SC/𝜎𝑦 (𝜎𝑥 + 𝜎𝑦). As shown
before, a circular mode beam is round; 𝜎x = 𝜎y leading
to 𝑃x = 𝑃y. Therefore, the tune shift will be the same as for
the equivalent round uncoupled beam.

SIMULATIONS
As mentioned above, for the simulations we are using two

codes: WARP and TRACK, particle-in-cell (PIC) codes that
can effectively compute the space charge effect by solving
Poisson’s equation. In this section, we will be showing two
studies, a normal quadrupole doublet channel and normal

Figure 3: Tune shifts vs. current: (a) quad doublet channel,
(b) quad doublet ring.

quadrupole doublets with normal dipoles in a ring forma-
tion. All the systems were designed for a proton beam with
𝐸kin = 10 MeV. The beam distributions are all Gaussians
with different settings; circular mode beam, uncoupled round
beam, and flat beam. Uncoupled round beam and circular
mode have the same real plane emittances while the flat
beam is the same one that is used for the creation of the
circular mode beam. 𝜖x = 10−4 m·rad and 𝜖y = 10−6 m·rad
for flat with 𝛽x,y = 3.33 and 𝛼x,y = 0.0.

As it can be seen from Fig. 3, the circular mode tune
shifts as predicted above behave the same as for an uncou-
pled round beam in both cases, whereas for the flat beam,
one of the dimensions blows up due to being much smaller.
Therefore, circular modes are elegantly solving this problem,
as we can see from the results and the analysis in the theory
section, where they can be transformed back to flat beams
using the inverse transform mentioned in Ref. [2].

CONCLUSION
In conclusion, we showed that circular modes can mitigate

the devastating effects of space-charge in flat beams and can
be transformed back using the inverse adapter. Tune shifts
in flat beams are huge due to the smaller beam size in one
dimension, which can promote resonances and beam insta-
bility. Circular modes acting like a round beam in real space
minimize the tune shift caused by space charge, hence re-
ducing the tune spread. The effectiveness of circular modes
can be observed from a practical emittance difference of a
factor of 100, whereas the original theory was derived for
one of the emittances being zero.
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