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Abstract
A third-integer resonant slow extraction system is being

developed for the Fermilab’s Delivery Ring to deliver pro-
tons to the Mu2e experiment. During a slow extraction
process, the beam on target is liable to experience small
intensity variations due to many factors. Owing to the ex-
periment’s strict requirements in the quality of the spill, a
Spill Regulation System (SRS) is currently under design.
The SRS primarily consists of three components - slow reg-
ulation, fast regulation, and harmonic content tracker. In
this presentation, we shall present the investigations of using
Machine Learning (ML) in the fast regulation system, in-
cluding further optimizations of PID controller gains for the
fast regulation, prospects of an ML agent completely replac-
ing the PID controller using supervised learning schemes
such as Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) ML models, the simulated impact and
limitation of machine response characteristics on the effec-
tiveness of both PID and ML regulation of the spill. We
also present here nascent results of Reinforcement Learning
efforts, including continuous-action actor-critic methods and
soft actor-critic methods, to regulate the spill rate.

RESONANT EXTRACTION FOR Mu2e
Resonant extraction is a beam physics technique employed

to extract a slice of beam turn by turn in a circular accelerator
by exciting third integer resonance using dedicated sextupole
magnets.

Slow extraction at Fermilab is to be done at the Delivery
Ring (DR) using a circuit of 6 harmonic sextupoles and 3
fast quadrupoles, driving the horizontal tune from 9.650
to 9.666 to extract 1012 protons over the course of 43 ms
(≈ 25000 turns) to be sent to the muon production target.
Any protons left in the DR after 43 ms would be aborted. The
ideal spill quality would be to extract 3 × 107 protons every
turn, but we expect the spill quality to be heavily affected
with irregularities due to noises that could arise from various
accelerator components and other factors.
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The Mu2e experiment imposes strict requirements on the
spill quality since the detectors are sensitive to the intensity
variations of particles coming off of the muon production
target. We thus need a robust regulation system in place to
ensure high and steady spill quality.

REGULATION SYSTEM
The spill regulation system (SRS) comprises of slow reg-

ulation, fast regulation, and harmonic content canceller. The
present design bandwidth of the regulation system is 10 KHz,
i.e., 430 data points within one spill. A brief functional
overview of the SRS can be found at [3].

Fast Regulation System
The fast regulation in the SRS concerns the control of spill

quality within one spill to curtail any semi-random noise
that might arise and also suppress any high frequency 60 Hz
harmonic content that the harmonic content suppressor sys-
tem is not able to suppress. The fast regulation would be
supplemented on top of the slow regulation through a fast
feedback loop. This loop will send a control signal update
at every time step within one spill, and this signal will su-
perpose to the (already preloaded) quad current ramp of the
tune ramping quadrupoles to reduce the instantaneous noises
in the spill rate.

One way to implement the fast regulation is through PID
feedback control, which is a fairly robust and proven tech-
nique. But given the non-linearity of resonance process,
low spill time, and the strict requirements from the Mu2e
experiment on the spill quality, we also investigate possible
use of machine learning to enhance the fast regulation.

If the ideal spill rate is normalized to 1, the quality of the
spill is defined by the spill duty factor (SDF),

SDF =
1

1 + 𝜎2
spill

(1)

where 𝜎spill is the standard deviation of the spill rate. An
ideal spill would bear a constant spill rate value of 1, giving
us an SDF of 1. The goal of the SRS for Mu2e is to obtain
an SDF of 0.6 or higher.
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ANALYTICAL MODELLING OF
EXTRACTION WITH FAST REGULATION

Modelling of the extraction is necessary to validate var-
ious regulation schemes in simulations. Particle tracking
could be very computationally expensive, we thus developed
a simplified analytical model of the spill process to verify
the efficiency of different regulation schemes (an overview
of the algorithms can be found in [3]).

Physics Simulator
We built a physics simulator in Python (using the analyt-

ical model) to simulate the spill process and generate the
required spill data to train various machine learning mod-
els. The details of the physics simulator can be found in our
earlier work [3].

To train a machine learning model to regulate the extracted
spill intensity, we need a way to simulate the effects of the
models’ regulation signals on the extracted spill. This, then,
requires that the physics simulator itself must also be fully
differentiable, as gradients must be able to flow back from
the spill signal, through the physics simulator and into the
ML model. To accomplish this, we leveraged differentiable
operations in the widely used ML framework PyTorch [4]
to produce a fully-differentiable clone of the existing simu-
lator. Every operation in the original simulator, including
the low-pass filter for limiting the effective interaction rate
of the control system, has been replaced with its differen-
tiable counterpart in PyTorch. This allows us to propagate
gradients through the simulator and update the weights of
machine learning model. In the following section, we mo-
tivate the use of ML in this context, and discuss why our
approach is not only effective but theoretically sound.

ML FOR SPILL REGULATION
Our objective is to construct a machine learning system

that maps measured spill values (deviations from the ideal
spill) onto quadrupole currents that bring the spill inten-
sity back to the target intensity level, thereby smoothing
the noise inherent in resonant extraction. Historically, this
problem was solved using proportional–integral–derivative
controllers (PIDs) which are control loop mechanisms de-
signed to maintain a system in a steady state in the pres-
ence of external perturbations. While simple, effective, and
well understood, PIDs are a linear and symmetric heuristic
control system with constant parameters, meaning they are
designed to operate in domains in which the response of the
system is invariant across all operating regions. And while
approaches such as gain scheduling [5] exist to address this
issue, any PID-based regulation system will still be heuris-
tic. As we cannot presume the exact noise distribution and
possible nonlinearities in the extraction system, a control
system that is 1) nonlinear and 2) capable of adapting to the
idiosyncratic response of the extraction system, is warranted.
As modern neural networks represent a class of arbitrary
nonlinear function approximators, they are a natural solution

for extending resonant extraction control systems into the
nonlinear regime.

Broadly, the machine learning problem can be formulated
as follows. Given an input spill 𝑥 ∈ R430, we are looking for
a model 𝑓 (·), parameterized by trainable parameters 𝜃, such
that:

𝑓𝜃 : 𝑥 ∈ R430 → 𝑞 ∈ R430 (2)

where 𝑞 is a sequence of quadrupole correction currents.
Note that we do not index the input spills because each
spill is generated procedurally and is entirely random. As
mentioned before, the effect of these quadrupole correction
currents must be simulated using a differentiable simulator
we denote 𝑆𝐼𝑀 (·) which is a differentiable function mapping
𝑞 ∈ R430 → 𝑠 ∈ R430, where 𝑠 is the final corrected spill.
Note that while 𝑆𝐼𝑀 (·) is differentiable, it does not contain
any trainable parameters. The final spill profile is then 𝑠 =

𝑆𝐼𝑀
(
𝑓𝜃 (𝑥), 𝜆

)
, where 𝑥 is the input noise profile and 𝜆 is

the low-pass filter value that effectively puts an upper limit
on the interaction frequency of the regulation system. We
include it here because it has a strong impact on regulation
performance and is tunable via the use of different materials
for the beampipe.

Supervised Learning
In supervised learning, our goal is to learn a model that

minimizes the difference between the models’ output and the
supervision label. As our ultimate goal is to minimize the
noise inherent in the spill, we use as our supervision signal
the difference between the SDF of the corrected spill (gener-
ated by our model) and the SDF of an ideal spill (noiseless
spill intensity with a dimensionless value of 1). The training
loss ℓ then becomes:

ℓ = MSE
(
𝑠, ®1

)
(3)

Given the formulation in Eq. (2), a natural choice is a
recurrent network, which ingests an input sequence and pro-
duces an output sequence of equal size. Towards this end,
we implement a simple GRU [6] having two layers, a hidden
state of size 128 that ingests, at each point in the spill, a
window of the past 40 observations. To allow the model to
begin regulation at the first step in the spill, we prepend the
spill profile with a vector of length 40. Each element in this
prepended vector is assigned the value of the first element
in the random noise profile. Then, we walk forward in the
usual manner to generate 430 quadrupole corrections. At
the end of each spill, the loss is calculated using Equation 3
and the model parameters 𝜃 are updated.

Reinforcement Learning
Reinforcement Learning (RL) is a machine learning

methodology based on maximizing rewards and minimizing
penalties through trial and error. While our RL solution is
still under development, we briefly describe and motivate
it here. Of primary interest is the capacity for RL models
to be trained on real-world observations, i.e. outside of a
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Figure 1: Regulation performance of the GRU vs. PID. Each 
point represents the average SDF over 1k independent spills 
with identical noise profiles. Input noise had an average SDF 
of 0.51 for all trials.

simulator, and, as our ultimate goal is to control a physical 
device, RL represents a compelling opportunity.

RL can be modeled as a Markov Decision Process (MDP) 
involving environmental states, actions and rewards. The 
magnitude of the reward is a function of the state-action pair, 
which is often dependent on stochastic transition probabili-
ties describing the likelihood of some action ‘successfully’ 
transitioning the environment from one state to another.

Following the formulation in Eq. (2), our goal is to learn 
a policy mapping noised spills onto quadrupole corrections. 
At each point in the spill, our RL agent ingests a window 
of the past 10 observations, in RL called the ‘state space’, 
and the produces a single real-valued number corresponding 
to quadrupole correction, in RL called the ‘action space’. 
For each spill, the model produces 430 such corrections and 
our goal is to learn a policy which maximizes the reward 
(performance) over the entire spill.

To do this, we implement Soft Actor Critic (SAC), which 
is an off-policy, policy gradient based algorithm that we 
chose for two main reasons. First, it is designed to balance 
exploration and exploitation via entropy regularization, and 
second, it utilizes a method called the double-Q trick to 
reduce the bias. Both of these help to stabilize training in 
settings like ours having large or continuous action spaces.

To prevent the errors accumulating, we define a termina-
tion condition. If the SDF of the corrected spill drops below 
a predefined threshold, we immediately assign a large nega-
tive reward to discourage the agent from continuing down 
that path. If this condition is met more than 10 times in a 
spill, we stop the MDP trajectory and start a new one.

Finally, to improve the sample efficiency, we implement 
replay memory, which is a technique for extracting more 
information from each sample by storing it and learning 
from it multiple times.

RESULTS, CHALLENGES, 
AND FUTURE WORK

In Fig. 1, we show the average corrected SDF of using the 
GRU trained in a supervised manner and the PID. We note 
that this is as fair a comparison as can be made, as we opti-

mize the PID gain values independently for each low-pass
frequency using the differentiable simulator introduced in
our previous work [3]. The SDF of the input noise for all
trials had an average SDF of 0.51. The GRU, trained in a
supervised setting, is able to robustly outperform the PID
at all low-pass frequencies. Additionally, we see that the
advantage increases with the effective interaction frequency,
indicating that the value of capturing nonlinear character-
istics of the regulation system scales with the interaction
frequency. We put a particular emphasis on this point as it
is relevant to physical design choices, particularly for those
machine elements that limit the beam response time.

As PID controllers are used not just across Fermilab but
many engineering disciplines, we hope these results serve as
an impetus for continued exploration into learnable control
systems in other environments.

RL Challenges and Future Work
While we have built an environment for training RL agents

(Fig. 2), performance to date is not competitive with the
PID. We believe this to be a consequence of two central
features of our problem. First, is the MDP nature of RL. In
an MDP, the next state depends on the previous state-action
pair, meaning that once the model selects a sub-optimal
action, the immediate reward of this state-action pair will
be used to optimize the selection for the next policy update,
causing errors to accumulate over time. This is particularly
detrimental towards the latter end of the spill. In our case,
the model relies too much on the exploitation of the present
policy, which can leads to a dead-end in the action space. We
are approaching the issue by setting termination conditions
in our experiment and varying the exploration factor.

The second challenge arises from RL’s heavy reliance
on initialization. In our case, as the RL agent can take an
action value that is any real number within [−200, 200], the
action space is continuous, which makes finding an optimal
path time consuming. We are currently exploring the use
of a discrete action space as well as methods for carefully
selecting larger learning rates.

Initial Noise SDF

SDF = 0.9

RL Agent Training

Figure 2: As RL training proceeds, regulation performance
approaches the noise level, meaning the RL model is likely
learning not to intervene.
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