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Abstract
Exact transport equations for a pure dipole bend (a bend

with a dipole field and nothing else) have been derived and
formulated to avoid singularities when evaluated. The trans-
port equations include finite edge angles and no assumption
is made in terms of the bending field being matched to the
curvature of the coordinate system.

INTRODUCTION
Pure dipole bend elements, that is bends with a pure dipole

field and no higher order multipoles, are ubiquitous in lat-
tices used to simulate many machines such as the LHC,
SuperKEKB, RHIC, BEPC, etc., etc. Despite the fact that
such a bend is conceptionally simple (the particle motion
is circular), there is a wide range of algorithms used for
particle tracking. For example, the MAD8 program uses a
second order map [1], SixTrack uses splitting to approxi-
mately solve the exact Hamiltonian [2], PLACET [3] uses a
linear matrix in the transverse coordinates with the bending
strength scaled by the particle energy, the SAD program [4]
implements an exact solution [4], and Elegant implements
several tracking methods depending upon which type of
bend is chosen [5].

An exact tracking solution [4, 6, 7] is to be preferred over
an approximate one. However, up to now, the published
algorithms for the exact solution suffer from singularities
in the limit of zero reference bending angle or zero field.
The singularities are removable, however, since the formulas
involve multiple variables, this complicates implementation.
To simplify matters, this paper formulates the exact solution
in such a way as to avoid any singularities except for the
standard sinc(𝑥) = sin(𝑥)/𝑥 function which is easily coded
to be well behaved even in the vicinity of zero. The transport
equations include finite edge angles and no assumption is
made in terms of the bending field being matched to the
curvature of the coordinate system.

Not covered here is tracking through fringe fields so the
tracking algorithm assumes a hard edge to the dipole field.
The algorithm is divided into three parts: entrance tracking
for a finite entrance face angle 𝑒1, tracking the sector body,
and finally tracking for a finite exit face angle 𝑒2.

SECTOR BODY TRACKING
This section covers tracking through the body of the dipole

which is taken to be a sector bend as illustrated in Fig. 1. The
particle phase space coordinate system used for the analysis
is (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦 , 𝑧, 𝑝𝑧) where

𝑝𝑥,𝑦 =
𝑃𝑥,𝑦

𝑃0
, 𝑧 = −𝛽𝑐(𝑡 − 𝑡0), 𝑝𝑧 =

𝑃 − 𝑃0
𝑃0

(1)
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with 𝑃𝑥,𝑦 being the transverse momentum, 𝑃 is the momen-
tum, 𝑃0 is the reference momentum, 𝛽𝑐 the particle velocity,
𝑡 the time, and 𝑡0 the reference time.

The particle’s phase space coordinates are expressed with
respect to a geometric (𝑥, 𝑦, 𝑥) curvilinear coordinate system.
The (𝑥, 𝑦, 𝑠) coordinate system at the entrance to the dipole
has origin at 𝑂1 with 𝑦 perpendicular to the plane of the
dipole, and 𝑥 and 𝑠 in the plane of the dipole with 𝑥 along
the entrance edge, and 𝑠 perpendicular to the entrance edge.
The (𝑥, 𝑦, 𝑠) coordinate system at the exit end has the origin
at 𝑂2 and has a similar orientation with respect to the exit
edge as the entrance coordinates with respect the entrance
edge.

As shown in Figure 1, at point 1 where the particle enters
the bend, 𝜙1 is the angle of the particle trajectory in the
plane of the bend with respect to the 𝑠 axis. In terms of the
entrance phase space coordinates, 𝜙1 is

sin(𝜙1) =
𝑝𝑥1√︃

(1 + 𝑝𝑧)2 − 𝑝2
𝑦

(2)

where the subscript “1” for 𝑝𝑧 and 𝑝𝑦 is dropped since these
quantities are invariant.

The (𝑢, 𝑣) coordinate system in the plane of the bend is
defined with the 𝑢-axis along the exit edge of the bend and
the 𝑣-axis is perpendicular to the 𝑢-axis. The origin is at
the design center of the bend. The point (𝑢1, 𝑣1) where the
particle enters the bend is given by

𝑢1 = (𝜌 + 𝑥1) cos(𝜃) (3)
𝑣1 = (𝜌 + 𝑥1) sin(𝜃) (4)

where 𝜌 is the design radius of curvature, 𝑥1 is the offset of
the particle from the design at the entrance point, and 𝜃 is
the design bend angle

𝜃 =
𝐿

𝜌
= 𝑔 𝐿 (5)

with 𝐿 being the design arc length and 𝑔 ≡ 1/𝜌.
The coordinates (𝑢0, 𝑣0) of the center of curvature of the

particle trajectory is

𝑢0 = 𝑢1 − 𝜌𝑝 cos(𝜃 + 𝜙1) (6)
𝑣0 = 𝑣1 − 𝜌𝑝 sin(𝜃 + 𝜙1) (7)

where 𝜌𝑝 is the radius of curvature of the particle trajectory
in the (𝑢, 𝑣) plane

𝑔𝑝 =
1
𝜌𝑝

=
𝑔tot√︃

(1 + 𝑝𝑧)2 − 𝑝2
𝑦

(8)

with 𝑔tot being the bending strength of the actual field as
opposed to 𝑔 which is the bending strength defined by the
geometry of the sector.
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Figure 1: Geometry for the exact bend calculation. The particle starts at (𝑢1, 𝑣1) on the entrance edge and travels to point
(𝑢2, 0) on the exit edge.

The coordinates of the particle at the exit face is (𝑢2, 0)
where

𝑢2 = 𝑢0 +
√︃
𝜌2
𝑝 − 𝑣2

0 (9)

After some manipulation, the offset of the particle 𝑥2 from
the design point at the exit face is

𝑥2 = 𝑢2 − 𝜌 = 𝑥1 cos(𝜃) − 𝑔

2
𝐿2 sinc2 (𝜃/2) + 𝜉 (10)

where, as discussed in the introduction, sinc(𝑥) is the stan-
dard sin(𝑥)/𝑥 function. 𝜉 in the above equation can be ex-
pressed in two different ways

𝜉 =
𝛼[

cos2 (𝜃 + 𝜙1) + 𝑔𝑝 𝛼
]1/2 + cos(𝜃 + 𝜙1)

(11)

or

𝜉 =

[
cos2 (𝜃 + 𝜙1) + 𝑔𝑝 𝛼

]1/2 − cos(𝜃 + 𝜙1)
𝑔𝑝

(12)

where

𝛼 = 2 (1 + 𝑔 𝑥1) sin(𝜃 + 𝜙1) 𝐿 sinc(𝜃) − (13)
𝑔𝑝 (1 + 𝑔 𝑥1)2 𝐿2 sinc2 (𝜃)

Both Eq. (11) and Eq. (12) are needed since Eq. (11) is
singular when 𝛼 = 0 and 𝜃 + 𝜙1 = 𝜋 (which happens when
the particle is bent by 180◦), and Eq. (12) is singular when 𝑔𝑝

is zero. A simple way to implement the calculation to avoid
these singularities is to use Eq. (11) when |𝜃 + 𝜙1 | < 𝜋/2
and otherwise use Eq. (12).

Once 𝑥2 is computed, the arc length of the particle 𝐿𝑝 is

𝐿𝑝 =
|L𝑐 |

sinc(𝜃𝑝/2)
(14)

where L𝑐 is the vector (chord) from point 1 and point 2

L𝑐 = (𝐿𝑐𝑢, 𝐿𝑐𝑣) = (𝜉,−𝐿 sinc(𝜃) − 𝑥1 sin(𝜃)) (15)

and 𝜃𝑝 is the angle made by the particle trajectory which is
twice the angle between the initial particle trajectory P and
the vector L𝑐

𝜃𝑝 = 2 (𝜃 + 𝜙1 − atan2 (𝐿𝑐𝑢,−𝐿𝑐𝑣)) (16)

where atan2(𝑦, 𝑥) is the standard two argument arctangent
function.

Once 𝐿𝑝 is computed, 𝑝𝑥2, 𝑦2 and 𝑧2 phase space coordi-
nates at the exit edge are easily calculated

𝑝𝑥2 =

√︃
(1 + 𝑝𝑧)2 − 𝑝2

𝑦 sin(𝜃 + 𝜙1 − 𝜃𝑝) (17)

𝑦2 = 𝑦1 +
𝑝𝑦 𝐿𝑝√︃

(1 + 𝑝𝑧)2 − 𝑝2
𝑦

(18)

𝑧2 = 𝑧1 +
𝛽 𝐿

𝛽ref
−

(1 + 𝑝𝑧) 𝐿𝑝√︃
(1 + 𝑝𝑧)2 − 𝑝2

𝑦

(19)

where 𝛽 is the normalized velocity of the particle and 𝛽ref is
the normalized velocity of the reference particle.

EDGE TRACKING
For bends where the pole faces are rotated with respect

to the nominal sector geometry, the above algorithm must
be extended. The geometry for the entrance face is shown
in Figure 2. The angle 𝑒1 is the rotation of the edge of the
bend (where the field starts) about the origin point 𝑂1. It
is assumed that the propagation of the particle in the lattice
element previous to the bend will always leave the particle
at the sector edge (green dot in the figure) independent of
𝑒1. To account for a finite 𝑒1 the following steps need to be
taken:
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Figure 2: Entrance face geometry with a finite 𝑒1 face angle.
The actual bend edge where the field starts is rotated from
the “sector edge”. A similar situation occurs at the exit
edge. The particle starts (green dot) at a distance 𝑥0 from
the origin 𝑂1 of the edge rotation. The particle is drifted to
the actual bend edge (yellow dot) and then propagated as if
in the dipole field back to the sector edge (red dot).

1. Drift (propagate in a straight line) the particle from the
sector edge to the actual bend edge (yellow dot). The
propagation may be forward or backwards depending
upon on the signs of 𝑥0, the distance from 𝑂1 to the
particle, and 𝑒1.
The particle drifts a distance 𝐿𝑎 to the actual bend edge
at a distance 𝑥𝑎 from 𝑂1. 𝐿𝑎 and 𝑥𝑎 are computed via

𝐿𝑎 =
𝑥0 sin(𝑒1)

cos(𝑒1 + 𝜙0)

𝑥𝑎 =
𝑥0 + 𝐿𝑎 sin(𝜙0)

cos(𝑒1)
(20)

where 𝜙0 is the angle of the particle trajectory with
respect to the perpendicular of the sector edge.

2. Propagate the particle as if it were in the dipole field
from the actual bend edge to the sector edge (red dot).
Again the propagation may be forward or backwards
depending upon on the signs of 𝑥0 and 𝑒1.
The same equations as in the previous section can be
used with the substitution

𝜃 → −𝑒1

1 + 𝑔 𝑥1 → 𝑥0 (21)

The particle can now be propagated throughout the body of
the bend as discussed in the previous section.

At the exit end, with pole face rotation 𝑒2, the process is
reversed

1. Propagate the particle as if in the dipole field from the
exit sector edge to the exit actual bend edge.

2. Drift the particle from the actual exit bend edge to the
exit sector edge.

CONCLUSION
The exact solution to tracking through a pure dipole field

has been presented in such a way as to avoid singularities
in the equations. The algorithm includes the handling of
finite face angles at the entrance and/or exit ends. Not cov-
ered are fringe fields. The exact bend equations have been
implemented in the PTC library [8] and the Bmad software
toolkit [9] for charged-particle simulations.
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