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Abstract

This paper extends prior work describing a complex en-
velope (i.e., baseband) dynamic model of excited acceler-
ator RF cavities, including the effects of frequency detun-
ing, beam loading, reflections, multiple drive ports and par-
asitic modes. This model is presented here in closed-form
transfer function and state-variable realizations, which
may be more appropriate for analytic purposes. Several ex-
ample simulations illustrate the detailed insight into RF
system behavior afforded by this model.

TRANSFER FUNCTION MODEL

Stated below are the baseband Laplace in-rail (cosine)
and cross-rail (sine) impulse transimpedance responses of
an intrinsic cavity, as developed in [1]. Here, the polyno-
mial coefficients have been recast to conform to standard
control theory nomenclature.
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T = cavity damping time constant (s);

Aw = wy — w, = detuning frequency (rad/s);
w, = cavity resonant frequency (rad/s);

w4 = drive frequency (rad/s);

R, = cavity shunt resistance (ohms);

Q = intrinsic cavity quality factor.

In general, these functions are of second order, with a
complex pair of poles and a real zero. However, with no
detuning (A®w=0), pole-zero cancellation occurs, and the
functions revert to first order, with a single real pole.

* This work was supported in part by NSF award #1935994.
T Stephen.jachim@asu.edu

07: Accelerator Technology

The complete response of the cavity is then:
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V¢i,q(s) = in/quadrature phase cavity voltage;
1. 4(s) = in/quadrature phase cavity current.

LOADED CAVITY RESPONSE

As described in Ref. [1], the terminal conditions that
govern the interface between the drive line, intrinsic cavity
and beam current are given by:

Vo=V +V;;

I.=(V; = V)Y, + nly;

Ve = forward/reverse drive line voltage;
V. = cavity voltage;

Y, = drive line characteristic admittance;
n = beam coupling transformer ratio;
I.= cavity current;

I, = beam current.

These relations are represented in block diagram form in
Fig. 1. Note that all signals are complex-valued.
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Figure 1: Operational block diagram of line/beam/cavity
interactions.

While this operational model works well for simulation,
algebraic equations may be more appropriate for analytical
purposes. Thus, it can be shown that the following equa-
tions are equivalent to the loaded cavity model:

V,
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STATE-SPACE MODEL

For control system design, a state-space model of the
plant to be controlled is often required. Figure 2 shows one
such realization in second companion form [2, 3]. The in-
trinsic cavity behavior is expressed in standard form:
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Figure 2: State-space realization block diagram of loaded cavity in second companion form.

Then with loading:
u =V — V)Y, +nly;
Ve =

The internal states (x,;, X,4) are not physically accessi-
ble, but this model can be a basis for design of a reduced-
order asymptotic observer [4]. With the estimated internal
states, full-state feedback can be implemented.

The design and implementation of a real-time analog
simulator, utilizing an alternative canonical form, can be
found in Ref. [5].

SIMULATION RESULTS

To illustrate the utility of the cavity model, several sce-
narios were simulated with the system of Fig. 2. and:

T =20us;
Q = 50,000;
n=1.

Figure 3 shows the filling response of an overcoupled
cavity (8 = R.Y, = 2) with no detuning (Aw = 0). RF
power is applied at t = 10 ps. Note that the reflected
power passes through zero momentarily, on the way to its
final value.
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Figure 3: Response of overcoupled cavity.

When beam (20 mA @ -135 deg) is added at t = 50 us
to a critically-coupled cavity (f = 1), the effect on cavity
and reflected voltage is shown in Fig. 4.
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Figure 4: Response of critically-coupled cavity with beam
loading.

A more complex response is obtained in Fig. 5. Here, an
overcoupled cavity (8 =4) is driven detuned (Aw =
le6rad/s), and beam is applied (101 mA @ -99°). After
final settling, the reflected power is zero, and the cavity
appears to be matched. Figure 6 shows the cavity voltage
response in the complex plane, where the transient oscilla-
tions of cavity settling are clear.
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Figure 6: Complex cavity voltage settling.

Additional model responses, including multiple drive
ports and parasitic modes, can be found in [1].
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