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Abstract
Using transfer maps to simulate charged particle motion

in accelerators is advantageous since it is much faster than
tracking step-by-step. One challenge to using transfer maps
is to properly include radiation effects. The effect of radia-
tion can be divided into deterministic and stochastic parts.
While computation of the deterministic effect has been pre-
viously reported, handling of the stochastic part has not.

In this paper, an algorithm for including the stochastic
effect is presented including taking into account the finite
opening angle of the emitted photons. A comparison demon-
strates the utility of this approach. Generating maps which
include radiation has been implemented in the PTC software
library which is interfaced to the Bmad toolkit.

INTRODUCTION

Particle in accelerators tracking is an important and widely
used simulation tool since it is the only reliable technique
that can accurately and reliably probe the nonlinear effects,
such as particle loss, that can develop in particle beams over
many turns [1]. Routinely, particle tracking is done either
by tracking step-by-step which is slow, or by using one or
more transfer maps which is fast but potentially inaccurate.

Radiation effects, when relevant, complicate tracking.
While one can include the radiation effects into step-by-
step tracking, this is generally not done when using transfer
maps or is done using a simple energy kick at the end of a
map which in many cases is not accurate enough. In this
paper we show how to incorporate the radiation effect with
map tracking.

The reaction of a particle due to the emission of a photon
can be modeled as the sum of two kicks: There is the "deter-
ministic" kick which is the average radiation emitted at the
emission point plus a "stochastic" kick which represents the
fluctuations around the average. If the effect on a particle
via emission of a photon is small, which is generally the case
in any practical machine, the stochastic kick can be modeled
as having Gaussian probability profile [2].

Inclusion of the deterministic part has been previously
reported [3, 4], handling of the stochastic part has not and
this is the subject of this paper. Comparisons of map tracking
with element-by-element tracking demonstrate the utility of
this approach.
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RADIATION EMISSION
The phase space coordinate system used for the analysis

is (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦 , 𝑧, 𝑝𝑧) where

𝑝𝑥,𝑦 =
𝑃𝑥,𝑦

𝑃0
, 𝑧 = −𝛽𝑐(𝑡 − 𝑡0), 𝑝𝑧 =

𝑃 − 𝑃0
𝑃0

(1)

with 𝑃𝑥,𝑦 being the transverse momentum, 𝑃 is the momen-
tum, 𝑃0 is the reference momentum, 𝛽𝑐 the particle velocity,
𝑡 the time, and 𝑡0 the reference time. It will be assumed
that the particle energy is large enough so that 𝑝𝑧 can be
approximated by (𝐸 − 𝐸0)/𝐸0 where 𝐸 is the particle total
energy and 𝐸0 is the reference energy. If this approximation
is not valid, it is fairly straightforward to extend the results
here to lower energies.

The energy loss Δ𝐸 over some small path length 𝐿𝑝 is
modeled via [2]

Δ𝐸

𝐸0
= −𝑘𝐸 ≡ −

[
𝑘𝑑

〈
𝑔2〉 𝐿𝑝 +

√︃
𝑘𝑓

〈
𝑔3
〉
𝐿𝑝 𝜉𝐸

]
𝑝2
𝑟 (2)

where 𝑝𝑟 ≡ 1 + 𝑝𝑧 , 𝑔 is the bending strength (1/𝑔 is the
orbital bending radius), 𝜉𝐸 is a Gaussian distributed random
number with unit sigma and zero mean, and ⟨. . .⟩ is an
average over the path length. In the above equation, the
deterministic 𝑘𝑑 and stochastic 𝑘𝑓 coefficients are given by

𝑘𝑑 =
2 𝑟𝑐
3

𝛾3
0 , 𝑘𝑓 =

55 𝑟𝑐 ℏ
24

√
3𝑚 𝑐

𝛾5
0 (3)

where 𝛾0 is the energy factor of an on-energy particle
and 𝑟𝑐 is the particles “classical radius” given by 𝑟𝑐 =

𝑞2/4 𝜋 𝜖0 𝑚 𝑐2 where 𝑞 is the particle’s charge and 𝑚 is the
particle’s mass.

Ignoring the finite opening angle for now, radiation emit-
ted in the forward direction preserves the angular orienta-
tion of the particle’s motion which leads to the following
equations for the changes in the momentum phase space
coordinates

(Δ𝑝𝑥 ,Δ𝑝𝑦) = − 𝑘𝐸

𝑝𝑟
(𝑝𝑥 , 𝑝𝑦), Δ𝑝𝑧 ≈

Δ𝐸

𝐸0
= −𝑘𝐸 . (4)

The fact that an emitted photon is not exactly collinear
with the particle direction (often called the “opening angle”)
can be modeled as a separate process from the energy loss.
The change Δ𝑝⊥ in the momentum transverse to the bending
plane is given by

Δ𝑝⊥ =

√︃
𝑘𝑣

〈
𝑔3
〉
𝐿𝑝 𝜉𝑣 (5)
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where the 𝜉𝑣 is a Gaussian distributed random number with
unit sigma and zero mean and is independent of the 𝜉𝐸 in
Eq. (2). The opening angle coefficient 𝑘𝑣 is given by

𝑘𝑣 =
13 𝑟𝑐 ℏ

24
√

3𝑚 𝑐
𝛾3

0 . (6)

TRANSPORT MAP WITH
RADIATION INCLUDED

The transport maps considered here are with respect to a
reference orbit which is the closed orbit for lattices with a
closed geometry and for lattices with an open geometry the
reference orbit is the beam orbit which has some given initial
position. In both cases, the reference orbit must be calcu-
lated including radiation damping but ignoring the stochastic
effects. Since the stochastic kick is a random walk in six
dimensions, the transfer map from position 𝑠1 to position 𝑠2
will be of the form

𝛿r2 = M21 (𝛿r1) + S21𝚵 (7)

where 𝛿r1 and 𝛿r2 are the particle positions with respect to
the reference orbit at 𝑠1 and 𝑠2 respectively, and M21 is the
transfer map with damping. Since M21 is computed with
respect to the beam centroid orbit, there is no constant part to
the map. The stochastic radiation part in the above equation
is represented by a 6 × 6 matrix S times a 6-vector

𝚵 = (𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6) (8)

with each 𝜉𝑖 being an independent Gaussian distributed ran-
dom number with unit sigma and zero mean. The stochas-
tic transport is treated here only in lowest order. This is
a good approximation as long as the radiation emitted is
small enough in the region between 𝑠1 and 𝑠2. This is true in
nearly all practical cases. If this approximation is violated,
the beam will have a non-Gaussian shape.

MAP WITH DETERMINISTIC DAMPING
The transfer map with dampingM is calculated by adding

in the effect of the damping when integrating the equations
of motion to form the map. This has been discussed by
Nishikawa [5], Ohmi [3] and Chao [4]. Through a given
lattice element, it is generally very safe to assume that the
change in energy is small compared to the energy of a parti-
cle. Thus the matrix M, which is the first order part of M,
through an element can is computed via first order perturba-
tion theory to be

M = T + Z (9)

where T is the transfer matrix without damping calculated
around the reference orbit and Z is the change in T due to
damping computed via

Z =

∫ 𝑠2

𝑠1

𝑑𝑠T2,𝑠 d(𝑠) T𝑠,1 (10)

where the local damping matrix d is computed from Eqs. (2)
and (4)

d = − 𝑘𝑑 × (11)

©­­­­­­­­­«

0 0 0 0 0 0
𝑑𝑔2

𝑑𝑥
𝑝𝑥 𝑝𝑟 𝑔2𝑝𝑟

𝑑𝑔2

𝑑𝑦
𝑝𝑥 𝑝𝑟 0 0 𝑔2𝑝𝑥

0 0 0 0 0 0
𝑑𝑔2

𝑑𝑥
𝑝𝑦 𝑝𝑟 0 𝑑𝑔2

𝑑𝑦
𝑝𝑦 𝑝𝑟 𝑔2𝑝𝑟 0 𝑔2𝑝𝑦

0 0 0 0 0 0
𝑑𝑔2

𝑑𝑥
𝑝2
𝑟 0 𝑑𝑔2

𝑑𝑦
𝑝2
𝑟 0 0 2𝑔2𝑝𝑟

ª®®®®®®®®®¬
.

All quantities are evaluated on the closed orbit.

STOCHASTIC TRANSPORT
The S matrix in Eq. (7) is calculated by first noting that, to

linear order, the distribution of 𝛿r2 due to stochastic radiation
over some length 𝑑𝑠 as some point 𝑠 is

𝛿r2 =
√
𝑑𝑠M2,𝑠

(
F𝑓 (𝑠) 𝜉𝐸 + F𝑣 𝜉𝑣

)
(12)

where M2,𝑠 is the first order part (matrix) of the map M2,𝑠
from 𝑠 to 𝑠2, and F𝑓 and F𝑣 are derived from Eqs. (4) and (5)

F𝑓 =

√︃
𝑘𝑓 𝑔

3
0 (0, 𝑝𝑥 𝑝𝑟 , 0, 𝑝𝑦 𝑝𝑟 , 0, 𝑝2

𝑟 ) (13)

F𝑣 =
√︁
𝑘𝑣𝑔0 (0,−𝑔𝑦 , 0, 𝑔𝑥 , 0, 0) (14)

where 𝑘𝑓 , 𝑝𝑥 , 𝑝𝑦 and 𝑝𝑧 are to be evaluated on the reference
orbit and g = (𝑔𝑥 , 𝑔𝑦) is the curvature vector with |g| = 𝑔

and which points away from the center of curvature of the
particle’s orbit. Since 𝛿r is, by definition, the deviation
from the reference orbit, 𝑝𝑥 = 𝑟2 and 𝑝𝑦 = 𝑟4 will be
zero on the reference orbit. The covariance matrix 𝝈𝛾 is
defined by 𝜎𝛾𝑖 𝑗 ≡ ⟨𝑟𝑖 𝑟 𝑗⟩𝛾 where ⟨. . .⟩𝛾 is an average over
the photon emission spectrum. The contribution, 𝝈𝛾21, to
the covariance matrix at 𝑠2 due to the stochastic emission
over the region between 𝑠1 and 𝑠2, is

𝝈𝛾21 =

∫ 𝑠2

𝑠1

𝑑𝑠M2,𝑠
[
F𝑓 (𝑠) F𝑡

𝑓 (𝑠) + F𝑣 (𝑠) F𝑡
𝑣 (𝑠)

]
M𝑡

2,𝑠

(15)
where the 𝑡 superscript indicates transpose. From Eq. (12)
it is seen that 𝝈𝛾21 is related to S via

𝝈𝛾21 = S21 S𝑡
21 . (16)

The calculation of S21 involves calculating 𝝈𝛾21 via Eq. (15)
and then using Eq. (16) to solve for S21. While Eq. (16)
does not have a unique solution, any matrix S that satisfies
Eq. (16) will give the correct distribution 𝝈𝛾21. A good
choice for constructing S is a Cholesky decomposition with
can be done efficiently and is robust.

EMITTANCE CALCULATION
As a side note, the beam emittance can be calculated [3]

by expressing the covariance matrix 𝝈𝛾 at 𝑠2 relative to the
covariance matrix at 𝑠1

𝝈𝛾 (𝑠2) = 𝝈𝛾21 + M21 𝝈𝛾 (𝑠1) M𝑡
21 . (17)
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Figure 1: Tracking results in a low emittance lattice. The
black line is theory, the red points are from tracking with
a linear 1-turn map (Eq. (7)). The green points are from
tracking element-by-element with a radiation kick put in at el-
ement ends. The purple points are from element-by-element
tracking like the green tracking except here all dipoles have
been split in half.

The beam size matrix 𝜎 is not the same as the covariance
matrix since the beam size matrix is an average over the par-
ticles of a beam and not an average over the photon emission
spectrum. However, in equilibrium, the two are the same.
Setting 𝑠1 = 𝑠2 = 𝑠, Eq. (17) becomes a linear equation in
the unknown elements of 𝝈𝛾 and is easily solved. Once the
beam size matrix is known, the emittances can be extracted
using an algorithm given by Wolski [6].

EXAMPLE TRACKING SIMULATION
Figure 1 shows an example of how modeling the stochastic

radiation kick can greatly improve tracking accuracy. A low
emittance electron lattice for the ALS-U ring at LBL was
used to track a bunch of particles for 50,000 turns. The hori-
zontal black line in the figure marks the theoretical emittance
for the vertical mode which was 102 pm. The theoretical
emittance was calculated using the algorithm as discussed
above. This calculation was cross-checked with a calcula-
tion using radiation integrals [2] and good agreement was
found. In this case, the emittance increase from the vertical
opening angle was small and had a negligible effect on the
simulations

The red, green and purple points in Fig. 1 show the emit-
tance as calculated from particle tracking. On any given turn,
the emittance of the beam is computed by first computing the
beam sigma matrix and then using Wolski’s [6] algorithm
to extract the emittances. The transverse damping time is
about 10,000 turns so the beam was tracked for about five
damping times.

With the red points, the tracking used a linear one-turn
map of the form Eq. (7). As can be seen, the emittance of the
tracked beam matches well the theoretical emittance. The
speedup of map tracking over element-by-element tracking

with this lattice of some 1100 elements was approximately
a factor of 500. Even using a fifth order map the speed
increase is about a factor of 20. This shows the power of
tracking with a map. One downside of map tracking is the
time it takes to construct the map in the first place but this is
more than balanced by the speed of tracking particles.

The green points are from tracking element-by-element
with a radiation kick (Eqs. (4) and (5)) applied at the ends of
all elements. With many lattices, lumping the radiation kick
to be at the element ends is a good approximation. However,
with this low emittance lattice, the result is that the emittance
equilibrates at a value that is about 70% higher than the
theoretical value. This is due to the design of the lattice
where the dispersion has been constructed to be significantly
smaller in the middle of bending magnets as opposed to
the ends. Since the effect of the stochastic emission on
the emittance scales as the square of the dispersion, only
radiating at the dipole ends leads to an increased simulated
beam size. For comparison, all the dipoles were split in
the middle and the tracking redone as shown by the purple
points. With the increased number of emission points, the
beam equilibrium emittance is closer to the theoretical being
only about 20% higher. The lattice used here had some
228 dipoles which means that with the split dipoles there
were 684 bend radiation points. This is to be compared to
the map tracking which only had a single six-dimensional
stochastic kick per turn but was more accurate.

CONCLUSION
How to incorporate the stochastic radiation kick with map

tracking has been presented. This includes taking into ac-
count the finite opening angle of the photons. Tracking
simulations with a low emittance electron lattice shows that
a one-turn map which has a single six-dimensional stochas-
tic kick can outperform tracking where there are hundreds
of radiation kicks per turn.

The stochastic kick in the map with radiation (Eq. (7))
represents the lowest order contribution. This is the same
approximation used by the radiation integrals analysis and
the emittance calculation as outlined above. Extending the
analysis to higher order is conceptually straightforward. Es-
sentially, the M matrices in Eq. (15) become maps and the
term in square brackets acquires a dependence upon the
transverse coordinates. In this case, the elements of the
𝝈𝛾 matrix are functions of the particle coordinates 𝛿r1 and
thus 𝝈𝛾 and the Cholesky decomposition must be evaluated
particle-by-particle when applying the map.

Creation of Taylor maps of arbitrary order that include
radiation effects including the finite photon opening angle
have been incorporated [5] into the PTC library [7] and this
has been interfaced to the Bmad [8] toolkit. The maps are
partially inverted (implicit) to achieve symplecticity when
there is no radiation damping. The maps also include spin
transport.
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