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 The study of microphonics for the LCLS-ll cryomodules was done at
Fermilab in the cryomodule testing facility (CMTF) facility (see Fig. 1).

« Passive microphonics techniques were implemented in the cryomodule to
reduce the effects of microphonics .

* Implementing these changes yielded a peak detuning below 10 Hz for 63
% of all cavities tested and an RMS detuning of less than 2 Hz for 60 % ne oo uz ne oo m2
of all cavities tested. The results are shown in Figure 3 and 4.

* Note that these results could be unique to the CMTF environment. The
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supply pressure at SLAC will be lower and so will the inlet helium ¥ E Time [Hr] Time [Hr]
temperature. : 2 E : Figure 8: Liquid Ilevel variation for Figure 9: Spectrogram showing the

« The detuning data was collected after a week of the cryomodule being E% S E% I-_Ielr_nholtz rpode in cavity_ 1 CM21. The effects of closing and opening the JT
cooled to 2 K since earlier data can be affected by thermalization effects. :':': O'I‘;'_ level Is correlated with the 51.5 Hz valve on the 51.5 Hz Helmholtz mode.
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 The cavities that have a peak detuning greater than 10 Hz have similar Tmebn Tmobn Tmepn Time i

vibrations sources such as a 30 Hz source attributed to the Kinney * Figure 6 shows data for CM15, the fundamental mode occurs at 138 Hz

Y : Fi 5: Spect f th ities in vCM showing the t iti ' ' '
vacuum pump. Other cavities are affected by cryogenics such as the 2.3 igure 5: Spectrogram of the cavities in vCM showing the transition with higher orde_r modes of 36 Hz, 54 Hz, and 90 Hz. Th_e small blip at
_ ) of 20 Hz vibration to 18 Hz by changing the supply pressure of the 2.3 around hour 13 is due to the supply pressure for the 2.3 K line.
K supply pressure, harmonics, and Helmholtz mode of the helium vessel. K line. o 7 h the data for CM15. the fund al de is 23 H q
The Helmholtz mode is affected by the liquid level inside the helium gure 7 Shows the data for N8 fhdamental moce Is 29 Tz an
vessel the higher order mode is 46 Hz. The 23 Hz line is correlated with the 2.3
' * All cavities tested shown in Figures 3 and 4 have 18 Hz or 20 Hz K supply pressure line.
vibrations « A prominent vibration in the LCLS-Il and HE CMs is due to 48 Hz to 51.5
............. « This vibration was studied by changing the supply pressure of the 2.3 Hz mode. This vibration is cavity dependent, in cavity 1 the vibration is
First cryomodule in a series-connected string K Iine. 51 5 HZ and in CaVity 8 |t iS 48 HZ.
40 K thermal shield return . . . . ° : : : : : : :
. 5 K thermal intercept retum  The supply pressure was varied from 10 psig to 40 psig in the This dn‘feren_ce_ In frequency Is due to the “_qUIfj level of the C_aVI’[y, the
[ <—— 300mm pipe: 2K vapor j verification cryomodule (vCM HE). Cryom;)fdule |sft|Ited and cavity 1 has a lower liquid level than cavity 8.
> > . . "y i .
ramster, 23 o 3barsupty” ] 2 K supply valve ) i  The results show that the 20 Hz vibration transitions to an 18 Hz -srrTswi i?]c;?gogthe iquid level on the 51.5 Hz vibration in cavity 1 are
e Z-phaso pipo i o vibration. The nominal supply pressure is 33 psig, at around 25 psi o
nd ” | b g g g g | B Lo PP D PSIg, PSI9  This effect is caused by the Helmholtz mode of the cavity liquid helium
return |RF\ RF || . \|RF||RF)|RF [ R |[ RF | [magner the 20 Hz vibration changes to 18 Hz. _ _
REREEEE LR R R RN L T | o . vessel. The Helmholtz mode can only occur in the superfluid phase of
. Cool-down/warm-up line * In this data acquisition the 18 Hz vibration becomes stable once the helium
W/ 1 R\ 1/ 5 K thermal intercept supply . . cy . . | . | | |
NPT Rl Y > e nominal pressure is reached. In other cases it is the 20 Hz vibration . Figure 9 shows that the JT valve does not affect this vibration
A " B - R * |n some of the cavities the 18 Hz vibration can also lead to harmonics
Figure 1: CMTF at Fermilab Figure 2: Cryogenic flow schematic as shown on the spectrograms in Fig. 6 and Fig 7. )
of a 1.3 GHz LCLS-ll cryomodule. Concl usion
Last L2 HE - -
. Cryomodule Cryomodules e o e =" > The LCLS-Il cryomodules changed their design to reduce the effects of
s g A —— / 5 5 microphonics. These changes were also implemented for the cryomodules in
w0+ s it e °[1 I e LCLS-Il HE. Despite these passive mitigation techniques the cavities still
] . 2 202 of o cs t | g1 %37 g experience frequency detuning caused by residual microphonics. An analysis of
- o sl o C B (e 5 the frequency detuning of 112 cavities along with multiple cryogenic parameters
EpY o €ihorg 2021 2019 . | Time [Hr} Time [Hr] = was made for 14 cryomodules. The results discussed demonstrate that cryogenic
g 2019 2 2 | 2018 1 ¥ 52 ¥ 88 - parameters such as liquid helium level and supply helium pressure variation affect
15 . | : | . ! ' : : . 1 : : 3:353 gag (‘2% the frequency detuning.
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Figure 3: Cavity peak detuning of all 8 Figure 4: RMS cavity detuning from b e Time [H1 enes
cavities from cavities tested from 2018 . oy Figure 6: Spectrograms showing LCLS || HE
_ _ ”» 2018 to 2022. These include cavities _ ) _ _ Fi 2. Spect £ ity 5 i
until 2022. These include cavities from from LCLS-Il and HE. harmonics observed in cav|ty 7 in CM 15, igure /. p.ec rogram o CﬂYl y _m
LCLS-Il and HE. The cavity peak the fundamental mode occurs at 18 Hz. CM15 showing the harmonics with . . . .
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