

Nb₃Sn Coating of a 2.6 GHz SRF Cavity by Sputter Deposition Technique M. S. Shakel, W. Cao, H. E. Elsayed-Ali, Md. N. Sayeed, Old Dominion University, Norfolk, VA G. Eremeev, Fermi National Accelerator Laboratory, Batavia, IL U. Pudasaini, A. M. Valente-Feliciano, Thomas Jefferson National Accelerator Facility, Newport News, VA

A cylindrical magnetron sputtering system is commissioned at Old Dominion University and operated to deposit Nb₃Sn on the inner surface of a 2.6 GHz single-cell Nb SRF cavity. Using two identical cylindrical magnetrons for Nb-Sn multilayer sequential sputtering followed by annealing, Nb₃Sn films are deposited on Nb substrates at the equator. The T_c of the films are 17.61 to 17.76 K. Also, ~1.2 µm thick Nb₃Sn is deposited onto the cavity surface. The first results from samples and cavity coatings and the operation of the cylindrical sputtering system are discussed.

Left: A sketch of the cylindrical magnetron sputtering system (1) Magnetron movement controller shaft, (2) Gate valve, (3) Vacuum chamber, (4) Magnets, (5) Water flow controller, (6) Top magnetron, (7) 8" ConFlat (CF) port of top magnetron, (8) Tube target, (9) Chamber door, (10) 2.6 GHz Nb SRF cavity, (11) Bottom magnetron. The magnetrons were made by Plasmionique to fit an ODU custom chamber. Right: Image of commissioned cylindrical magnetron sputtering system.

Nb and Sn tube target of dimension 0.9" OD x 0.8" ID x 4.5" (99.99%) purity) are installed on Top and Bottom magnetron, respectively.

10 mTorr deposition pressure with 50 SCCM Ar gas flow are used.

Operation

DC Plasma discharge. (a) Nb at 30 W, (b) Sn at 8 W.

Abstract

Sketch of a 2.6 GHz Nb SRF cavity and mount replicating three positions the cavity

Equator tube

from substrate.

Positions	Sn (at.%) of As- deposited films	Sn (at.%) of Annealed films
Top beam tube	33	22
Equator	32	19
Bottom beam tube	25	19

Sample resistance with temperature down to 4 K using four-point probe method. Inset shows the superconducting transition region of the films.

Position	<i>T_c</i> (K)	ΔT_c (K)	RRR
Top beam tube	17.61	0.24	2.26
Equator	17.76	0.06	3.00*
Bottom beam tube	17.73	0.1	5.01

Superconducting properties of the Nb₃Sn film. The highest T_c of 17.76 K and lowest ΔT_c of 0.06 K are observed for the film at the equator location.

*Equator sample's RRR values is calculated from the ratio of the resistance at 275 K to that at 20 K. Other RRR values are measured from the ratio of resistance at 300 K to that at 20 K.

Conclusion

We have commissioned a cylindrical magnetron sputtering system and used it to deposit Nb₃Sn films on flat samples at equivalent positions of equator and beam tubes of a 2.6 GHz Nb SRF cavity. The samples have T_c of 17.61–17.76 K and ΔT_c of 0.06–0.24 K. We have also coated an SRF cavity using the same conditions as used to coat the flat test samples. The cavity testing is in progress.

Acknowledgement: This work is supported by Department of Energy, Office of Accelerator R&D and Production, Contact No. DE-SC0022284, with partial support by DOE, Office of Nuclear Physics DE-AC05-06OR23177, Early Career Award to G. Eremeev.

Image of 2.6 GHz Nb cavity installed in the system. Coated cavity with $\sim 1.2 \ \mu m$ thick Nb₃Sn will be tested soon.