Extended Soft-Gaussian Code for Beam-Beam
Brookhaven Simulations e

National Laboratory
D. Xu!  Y.Luo! C.Montag! Y.Hao* J. Qiang’

IBrookhaven National Lab ’Michigan State University SLawrence Berkeley National Laboratory
Introduction Including 3rd order moments
m Strong-strong simulation is used to study the coherent motion during beam-beam collision After the frame is tilted, we can further extend the model to include higher order moments with
m PIC based strong-strong simulation is self-consistent, but much noisy the help of Hermite polynomial,
m Soft-Gaussian model assumes both beams being perfect bi-Gaussian distribution. Although it is ¢ (z,y) = aiiHi (x/o,) H; (y/0,) dg(,y) (16)

faster and less noisy, the assumption may be oversimplified o _ _ _
where the repeated indices mean summation, ¢, (x,y) the standard bi-Gaussian kernel as shown in

Eq. (6).

The coefficient is

m [ he discrepancy between the weak-strong and strong-strong simulation for Electron-lon Collider
(EIC) has been found. It is important to understand the difference in case there is some
coherent mechanism shadowed by the large numerical noise.
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m In the extended soft-Gaussian model (ESG), not only 04, but also o, and 3rd order moments

17
are considered. The ESG would be a better benchmark tool for strong-strong simulation. _ 1 (H,, (¢/0,) H, (y/7,)) (17)
m!n/! ! Y19y
: where the angle bracket means taking the average over all macro particles in simulation.
Standard soft-Gaussian model In the rotated frame, the first two orders are corrected zero.
. . . . . agg = 1, a9 = ag = ayy = ay; = ap = 0
The beam-beam potential generated by an upright bi-Gaussian distribution is, W | 10 o = 111 )
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where NNV is the total particle number, rq = ¢?/(4megmc?) the classical radius, v; the relativistic 2\ 00y 0\ oy
factor of the test particle, @5 the charge numbers of particles from two colliding bunches, and Upto 3rd order, the beam-beam potential is
' isi ' 3 2 2 3
Oy are the. RMS beam sizes at the CO-”ISIOI”] point. | U = U, — a0 Usss — 021020,Ussy — 012030 Usyy — 030Uy, (19)
The deflection angle from the above bi-Gaussian beam can be obtained from the well-known vere U 0 T T e rioht hand ) T ety €T which ]
Bassetti-Erskine formula, W er.e wawy Yaays Yayy, Vyyy on the right hana are the partial derivatives or U, which can be
_ obtained analytically.
0.0,N - ( L \ In our code, there are 20 terms of 3rd order moments calculated at the IP. Assuming the drift
U, + iU, = — e TO\/ - n > |w tTY length between the collision point and the IP is L, the moments at collision point are
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where U, , is the abbreviation of the derivative <ay” > =< 20y > +2 < TYopyo > L+ < xopyy > L
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x,y the coordinates of the test particle, and w(z IS the Faddeeva function, <Y >=<yy>+3<ypy > L+ 3 <yp, > L
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(2) ? ( (4) the subscript “0" means the average is calculated at the IP.
Including beam tilt Simulation: soft-Gaussian vs PIC
. _ _ _ The growth rate is linearly fitted from the last 60% tracking data
A general 2D Gaussian distribution can be described by its >. matrix, 2 4 :
r - 105] | PIC, growth rate: -2504.7%/h 92
L Ozx ny — soft-Gaussian, growth rate: -795.8%/h | —
o 2 2o |
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Gq(x,y) = exp | —= (z,y) X (6) S 9- S
I 2/ det X 2 | YyJ S a5 S 8.0-
To use the Bassetti-Erskine formula, we can apply a rotation on the coordinates (x, y) — - y :;ﬁtg;‘ﬂj;ftgmﬁf‘a’;;“5294,”,
[ con@ <] 7] (3] 0 10 20 30 40 50 0 10 20 30 40 50
A = <10 cosfl 7 = A y (7) Tracking time [x 1000 turns] Tracking time [x 1000 turns]
L . L= L= 96.5 -
o - . - PIC, growth rate: 378.5%/h 8.60 1 PIC, growth rate: 646.0%/h
>0 that the 2, matrix in the rotated frame 1S dlagonal, — 96.0 soft-Gaussian, growth rate: -1.6%/h | __ soft-Gaussian, growth rate: 36.9%/h
] _ - _ = £ 8.55
Oy —O Oyy O 2055 = et
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_ny Ozx 0 Oxx 2 95.0 Hﬂmwr WW I.'; : e
where the overline denotes the variable in the rotated frame 2 045 2 845
o o
A possible solution is 94,0 8.40.
Oxx — Oyy - - - - - - i - - - - -
cos 20 = (9) 0 10 20 30 40 50 0 10 20 30 40 50
\/(0 — O )2 + 42 Tracking time [x 1000 turns] Tracking time [x 1000 turns]
qin 20 — 204y (10) The equilibrium electron sizes are different in both codes because the soft-Gaussian is not
\/(gm _ gyy)Q 4+ 40‘%y self-consistent. Compared with BeamBeam3D, the soft- Gaussian code is less noisy.
1 1 5
Tor = 5 (00 +0yy) + 54/ (00 — 0)” + 402, (11) Lo .
! z Simulation: extended soft-Gaussian
Oyy = 5 (002 + Oyy) — 5\/((7:5:1; - Uyy)Q + 4oy, (12) _
_ o _ _ - The growth rate is linearly fitted from the last 60% tracking data
Rotating back to the original x — y frame, the deflection angle by beam-beam interaction is ,
_ _ _ _ _ soft-Gaussian, growth rate: -1.6%/h ﬁuﬂm’“
[]ng B A_l Ux (13) g_ 94.9550 _includ.ing Oy, growth rate: -0.4%/h
U — U = 94.9525 - including 3rd order, ngTEh rate: 17.7%/h
Y y
. - r—tz 94.9500 | e
where U, , is calculated from Eq. (2) with substitution of 7,7, 7, . Tble T« Flat Bearm Parameters in the EIC CDR 2 susurs. a
Quantity unit proton electron E 9494507 "-T*‘Ltfif, AR
e e ﬂW%WMWuM
. 94.9425 -
Hermite POIynomlaI Crossing angle mrad 25 0 25 50 75 100 125 150 175 200
Beamhenergy (1351\1{ 02;658 1102 Tracking time [x1000 turns]
- 2 [ : Bunch intensity : i
The Hermite polynomial is defined as 5" at IP . 80/7.2 55/5.6 8508 | o
2 n 2 . ﬁ_.wmmf*"'w
T d T Beam sizes at IP pm 95/8.5 — 8506 NPT R
Transverse tunes 0.228/0.210  0.08/0.06 > 2% f “
The orthogonality, Longitudinal tune 0.01 0.069 T 8502
2 "= :
T - | soft-Gaussian, growth rate: 38.7%/h
/ H )exp — dor = V 27m'5mn (15) % 5500 including oy, growth rate: 13.5%/h
2 8.498 - including 3rd order, growth rate: 63.6%/h
The first seven Hermite polynomials are: 0 25 50 75 100 125 150 175 200
3 Tracking time [x 1000 turns]

Hy(x) =1, H (x) = «x, Hy(x) = z* — 1, H;(x) =2 — 3x

A 5 . 3 ; A ) Although the growth number is small, the 3rd order moments contribute to the horizontal and
Hy(z)=2"— 62"+ 3, H; (x) = 2” — 102° + 15z, Hg (x) = x° — 152" + 452~ — 15

vertical size growth.
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