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Introduction

Strong-strong simulation is used to study the coherent motion during beam-beam collision

PIC based strong-strong simulation is self-consistent, but much noisy

Soft-Gaussian model assumes both beams being perfect bi-Gaussian distribution. Although it is
faster and less noisy, the assumption may be oversimplified

The discrepancy between the weak-strong and strong-strong simulation for Electron-Ion Collider
(EIC) has been found. It is important to understand the difference in case there is some
coherent mechanism shadowed by the large numerical noise.

In the extended soft-Gaussian model (ESG), not only σx,y, but also σxy and 3rd order moments
are considered. The ESG would be a better benchmark tool for strong-strong simulation.

Standard soft-Gaussian model

The beam-beam potential generated by an upright bi-Gaussian distribution is,
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where N is the total particle number, r0 = e2/(4πϵ0mc2) the classical radius, γ0 the relativistic
factor of the test particle, Q1,2 the charge numbers of particles from two colliding bunches, and
σx,y are the RMS beam sizes at the collision point.
The deflection angle from the above bi-Gaussian beam can be obtained from the well-known
Bassetti-Erskine formula,
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where Ux,y is the abbreviation of the derivative
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x, y the coordinates of the test particle, and w(z) is the Faddeeva function,
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Including beam tilt

A general 2D Gaussian distribution can be described by its Σ matrix,

Σ =

[
σxx σxy
σxy σyy

]
(5)

ϕg (x, y) =
1

2π
√
det Σ

exp

[
−1

2
(x, y) Σ−1

(
x
y

)]
(6)

To use the Bassetti-Erskine formula, we can apply a rotation on the coordinates (x, y)
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so that the Σ matrix in the rotated frame is diagonal,[
σyy −σxy
−σxy σxx

]
= AT

[
σyy 0
0 σxx

]
A (8)

where the overline denotes the variable in the rotated frame.
A possible solution is
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Rotating back to the original x− y frame, the deflection angle by beam-beam interaction is[
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where Ux,y is calculated from Eq. (2) with substitution of x, y, σx,y.

Hermite Polynomial

The Hermite polynomial is defined as
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The orthogonality, ∫ ∞
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The first seven Hermite polynomials are:

H0 (x) = 1, H1 (x) = x, H2 (x) = x2 − 1, H3 (x) = x3 − 3x

H4 (x) = x4 − 6x2 + 3, H5 (x) = x5 − 10x3 + 15x, H6 (x) = x6 − 15x4 + 45x2 − 15

Including 3rd order moments

After the frame is tilted, we can further extend the model to include higher order moments with
the help of Hermite polynomial,

ϕ (x, y) = aijHi (x/σx)Hj (y/σy)ϕg(x, y) (16)

where the repeated indices mean summation, ϕg (x, y) the standard bi-Gaussian kernel as shown in
Eq. (6).
The coefficient is
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where the angle bracket means taking the average over all macro particles in simulation.
In the rotated frame, the first two orders are corrected zero,
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Upto 3rd order, the beam-beam potential is
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where Uxxx, Uxxy, Uxyy, Uyyy on the right hand are the partial derivatives of Ug which can be
obtained analytically.
In our code, there are 20 terms of 3rd order moments calculated at the IP. Assuming the drift
length between the collision point and the IP is L, the moments at collision point are
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the subscript “0” means the average is calculated at the IP.

Simulation: soft-Gaussian vs PIC

The growth rate is linearly fitted from the last 60% tracking data

The equilibrium electron sizes are different in both codes because the soft-Gaussian is not
self-consistent. Compared with BeamBeam3D, the soft- Gaussian code is less noisy.

Simulation: extended soft-Gaussian

The growth rate is linearly fitted from the last 60% tracking data

Although the growth number is small, the 3rd order moments contribute to the horizontal and
vertical size growth.

NAPAC2022, Albuquerque, New Mexico Aug. 7-12, 2022 dxu@bnl.gov

mailto:dxu@bnl.gov

