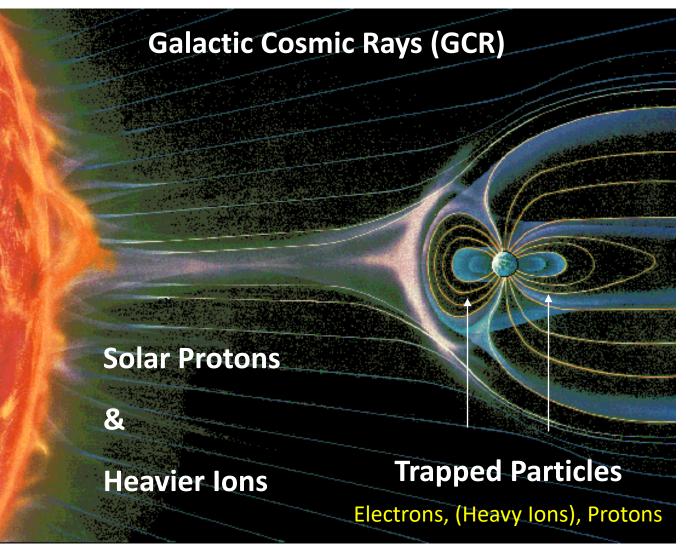
National Aeronautics and Space Administration

EXPLORE MOONtoMARS

RADIATION EFFECTS IN MICROELECTRONICS— WHY WE NEED PARTICLE ACCELERATORS


Jonathan Pellish NASA Electronic Parts Manager August 12, 2022

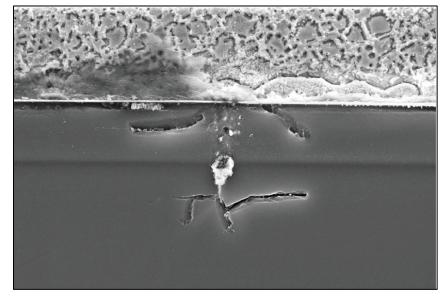
Outline

- Origins what are single-event effects and why do we need to test?
- **Evolution** how are test needs changing?
- Gaps do we have access to <u>sufficient</u> capacity and <u>necessary</u> capabilities? (projecting ahead is hard)
- *Mitigation* how do we overcome?

Talk will focus on heavy ion facilities in the United States Large and diverse trade space – this is just one perspective Test facilities are increasingly critical infrastructure for many economic sectors *…related topics can extend to proton and neutron test facilities too…*

Natural Space Radiation Environment Near Earth

Dynamic


Spatiotemporal Variations

After J. Barth, 1997 IEEE NSREC Short Course; K. Endo, Nikkei Science Inc. of Japan; and K. LaBel, private communication.

Single-Event Effects (SEE)

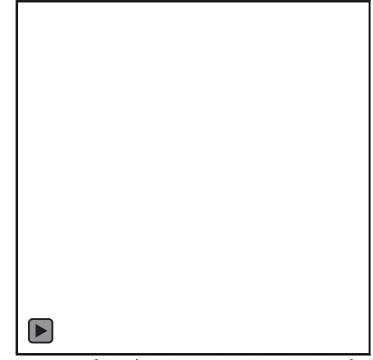

- SEE are any observable change in state or performance of a microelectronic device, component, subsystem, or system (digital or analog) resulting from a single energetic-particle strike
- They can be destructive

Image of a SEE failure location in a Schottky diode

M.C. Casey et al., IEEE Trans. Nucl. Sci., vol. 65, no. 1, Jan. 2018

Halloween Storms (Oct 18 - Nov 7, 2003)

Courtesy of SOHO/LASCO consortium. SOHO is a project of international cooperation between ESA and NASA.

SEE History Timeline

1962 – SEE first postulated

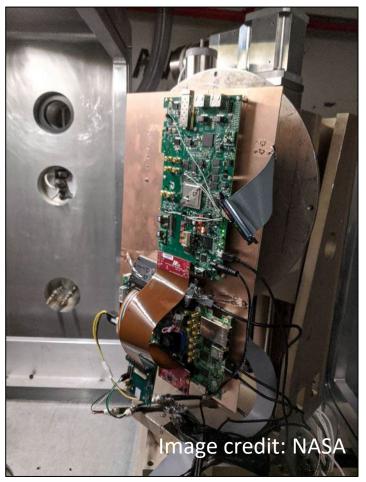
• J.T. Wallmark & S.M. Marcus, "Minimum size and maximum packaging density of non-redundant semiconductor devices," *Proc. IRE*, vol. 50, pp. 286-298, Mar. 1962.

1975 – First satellite SEE anomalies reported

• D. Binder, E.C. Smith & A.B. Holman, "Satellite anomalies from galactic cosmic rays," *IEEE Trans. Nucl. Sci.*, vol. 22, no. 6, pp. 2675-2680, Dec. 1975.

1978/1979 – First observation of SEE on Earth

- T.C. May & M.H. Woods, "A New Physical Mechanism for Soft Errors in Dynamic Memories," Int. Reliability Phys. Symp., Apr. 1978.
- J.F. Ziegler & W.A. Lanford, "Effect of Cosmic Rays on Computer Memories," Science, vol. 206, Nov. 1979.


1992 – First report of a destructive SEE in space

• L. Adams *et al.*, "A verified proton induced latch-up in space," in *IEEE Trans. Nucl. Sci.*, vol. 39, no. 6, pp. 1804-1808, Dec. 1992. After S. Buchner, 2011 SERESSA Course, Toulouse, France.

SEE Testing

- Why do we test?
 - 1. To determine the presence and characteristics of SEE
 - Destructive or non-destructive?
 - Voltage- and/or temperature-dependent?
 - List goes on for a quite a while...
 - 2. To calculate <u>bounding</u> SEE rates for a given mission, environment, application, and lifetime ("MEAL") – this is what matters to designers, system engineers, etc.
- SEE testing is usually performed at particle accelerator facilities, which irradiate an electronic device target (or board or box) with ions
 - Neutrons, protons, heavy ions, or more exotic primaries

Typical SEE Test Hardware Setup

Evolution

To be presented by J. Pellish at the 2022 North American Particle Accelerator Conference (NAPAC) in Albuquerque, NM on Aug. 12, 2022.

7

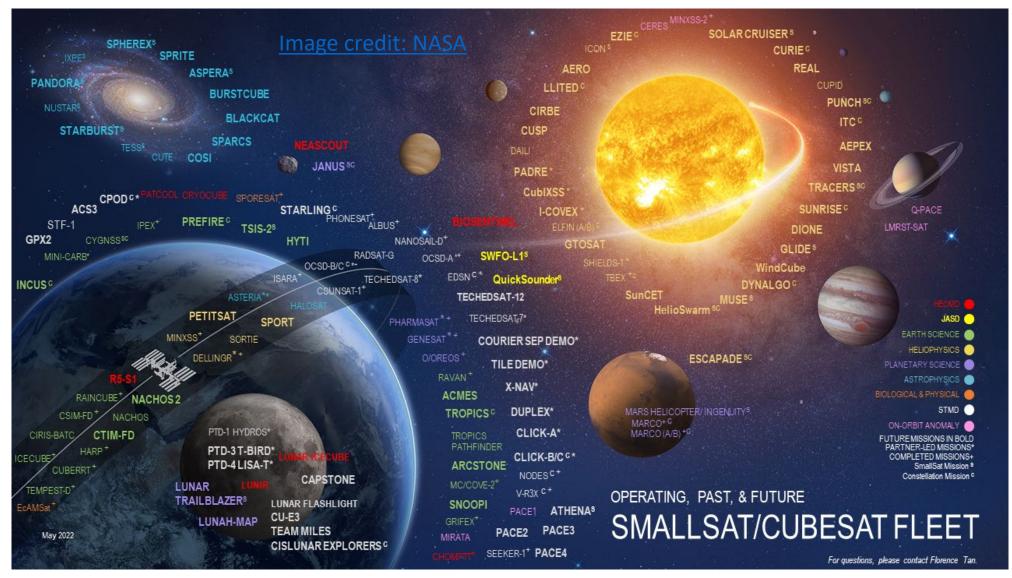
Technology Back Then...

Content and image courtesy of K. LaBel, SSAI Inc. / NASA GSFC, Radiation Effects Boot Camp, 2021.

- Devices were simple
 - Transistors
 - Memory arrays (4 kb SRAM!), 8-bit CPUs, etc.
 - High speed was 10 MHz operation
- Technologies were large and mostly silicon
 - >0.5 μ m (some >2.0 μ m) CMOS feature size

650x Processor

- 8 μ m feature size (not a typo) ~1975
- 8-bit central processing unit
- Up to 14 MHz
- 64 kB random access memory
- 256 bytes stack
- No input/output ports
- 28 or 40-pin dual in-line package
- Gallium arsenide was emerging; rad-hard was silicon on sapphire
- Device packaging
 - Planar
 - Ceramic and a little plastic
 - Through-hole packages


For SEE testing – it was easy to access to the die ("delidding") with limited SEE signatures (largely homogeneous devices)

...and Now

Content courtesy of K. LaBel, SSAI Inc. / NASA GSFC, Radiation Effects Boot Camp, 2021.

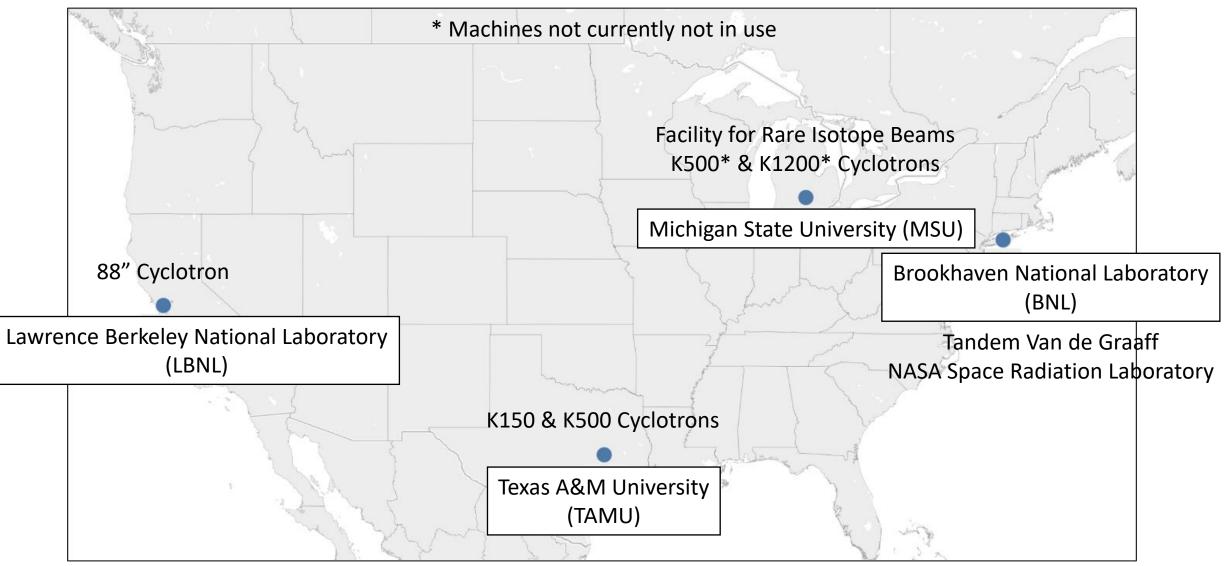
- Devices are not simple
 - Multi-core and heterogenous integration devices
 - >>Gbit Memories with built-in voltage conversion and microcontrollers
 - Extreme resolution or operating speeds and integration [*e.g.*, single devices replacing a whole card of devices from a decade or two earlier]
- Technologies aren't simple either
 - CMOS leading-edge feature size is <7 nm and soon <5 nm
 - Proliferation of wide bandgap (power and radio frequency devices)
 - Fins, gate all-around, and silicon-on-insulator are in!
 - Rad-hard = by design ("RHBD")
- Device packaging
 - Mix of planar (old school) and multi-dimensional (i.e., 3D) packaging

User Community Growth and Diversification

User Community Growth and Diversification

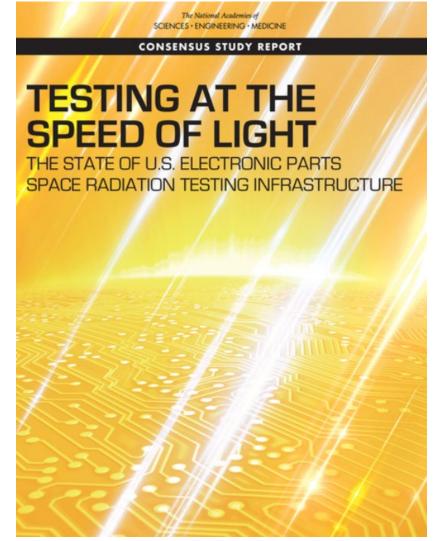
Human Landing System Commercial Crew Program

User Community Growth and Diversification


Image credit: The White House

 The CHIPS and Science Act of 2022 (<u>Public Law 117-167</u>), signed on Tuesday this week, will grow the U.S. microelectronics industry and likely have positive knock-on effects for radiation testing needs

Gaps


Major U.S. Heavy Ion <u>SEE Test Facilities</u>

Recent Assessments (National Academies 2017-2018)

- Key findings
 - Growing use and tightening supply
 - Infrastructure showing signs of strain
 - Aging workforce in a domain that requires specialized training and skills
 - Fast-moving technology
- Points to / needs
 - More organizational coordination
 - Test facility sustainment & new investments
 - Coupled with appropriate research & development
 - Workforce development

At least one detailed assessment pre-dated this work in the 2010s

https://doi.org/10.17226/24993

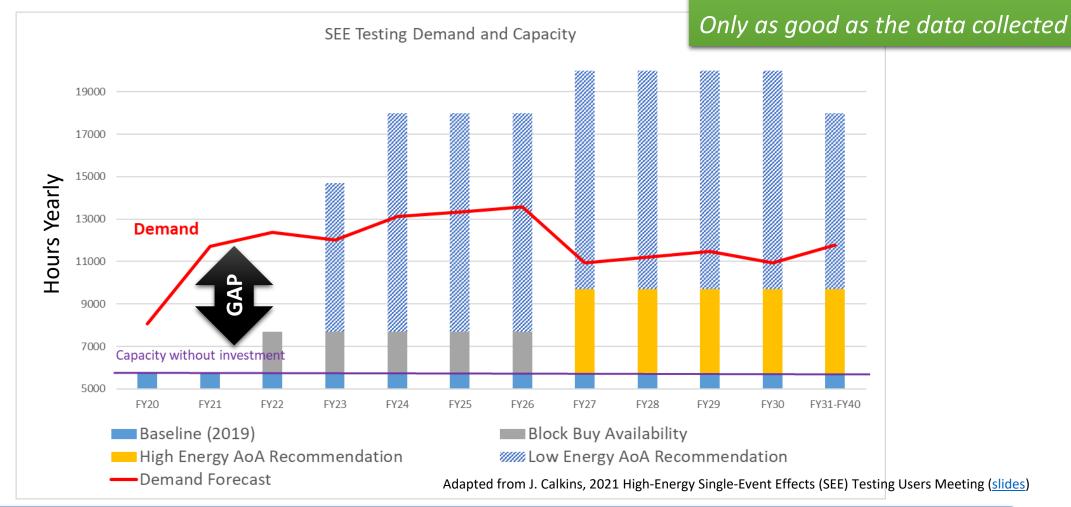
Recent Assessments—Analysis of Alternatives (AoA)

- Key findings from September 2020
 - Existing heavy ion SEE test facilities cannot meet current or future SEE test demand (~5000 hour/year gap)
 - Department of Defense efforts as well as U.S.
 Government and commercial space are driving significant increases in SEE testing demand
 - Current heavy ion accelerators for SEE testing at U.S. universities and Department of Energy labs have limited capacity and capability
 - More complex electronics (e.g., processors, ASICs, FPGAs) require more test hours
 - More advanced electronics and packaging (3D ICs, flip-chip packages, system-on-a-chip, or system-ina-package) require higher ion energies >100MeV/n

Findings and Recommendations are Independent and Non-Binding

×

Strategic Radiation-Hardened (SRH) Electronics Council (SRHEC) Public Summary from Analysis of Alternatives (AoA) for Domestic Single-Event Effects (SEE) Test Facilities


John Franco, DTRA Jim Ross, NSWC Crane

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

J. Calkins, 2021 High-Energy Single-Event Effects (SEE) Testing Users Meeting (<u>slides</u>)

Analysis of Alternatives (AoA)

Only a snapshot in time

Demand forecast is based on Fiscal Year 2020 projections of Defense programs (<u>other contributors too!</u>) Demand input from integrators, manufacturers, and suppliers would improve fidelity of demand forecast

Analysis of Alternatives (AoA)

Demand for high-energy SEE testing is growing (projections only)

Low Energy SEE Test 2020

- 90% of SEE test is Low Energy
 - 10-50 MeV/n (Mega-Electron Volts /n) 2030
- 60% of SEE test is Low Energy
 - Economical test for monolithic integrated circuits
 - Issues for flip-chip, stacked die,
 2.5/3D packaging, and assemblies
- Access assured with low energy investments
- TAMU K500 & K150, LBNL, FRIB Lin Seg 1, and MSU K500 meet Low Energy demand

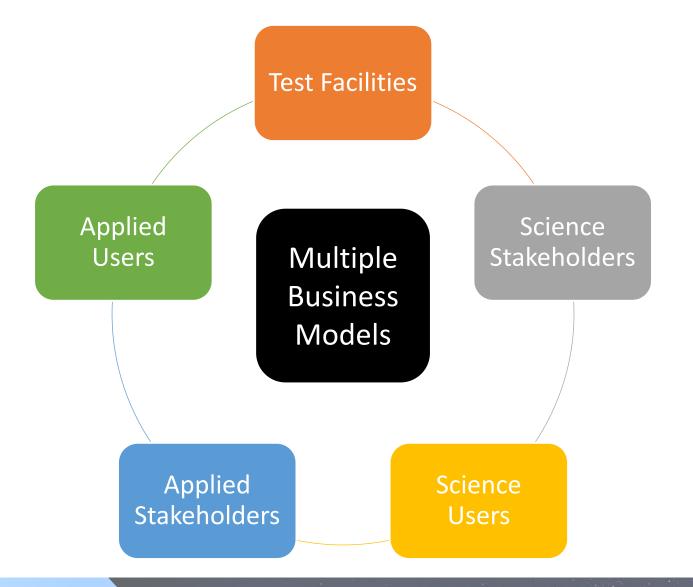
High Energy SEE Test 2020

- 10% of SEE test is High Energy
 100 MoV//p
 - >100 MeV/n

2030

- 40% of SEE test is High Energy
 - New technology and CCA level testing will demand high energy
 - Economical for new technology
- Access assured by high energy investment
- 40% is ~4000 hours/yr
 - BNL AGS or MSU K1200 meets High Energy demand

J. Calkins, 2021 High-Energy Single-Event Effects (SEE) Testing Users Meeting (slides)



Mitigation

More Organizational Coordination

Most facilities have multiple user and stakeholder communities SEE testers are often guests in

often guests in facilities designed and built for science

Need to invest in facilities is clear, but the trade space is complex

Unique time in the radiation effects community given planned investments & possibilities

Test Facility Sustainment & New Investments

- Utilize existing infrastructure to expand low-energy capacity
 - Repurpose available accelerator systems and leverage workforce, possibly gaining facilities dedicated to SEE testing
 - Consider reliability investment for current accelerator systems to increase availability through better efficiency and less downtime
 - Needs are immediate and investments are happening
- Continue and accelerate studies for new high-energy capabilities
 - Understand demand evolution for high-energy SEE harder to predict, but know it is coming
 - Development and utilization phasing are stretched out relative to low-energy investments
 - Requires more funding up front (vs. low-energy) and <u>careful consideration of sustainable</u> <u>business models</u> for long-term operation
 - Needs are growing and proposals are being considered

Summary

- SEE testing is essential for robust space exploration, science, and commercial technology capabilities
- Testing infrastructure is an essential part of the U.S. industrial base
- Industry growth and expanding mission objectives are driving demand and have created gaps in both capacity and capabilities
- Mitigations exist <u>and</u> require sustained funding and coordination to execute successfully

 While specifics may differ, these general themes appear outside the United States too

EXPLORE MOON to MARS

MOON LIGHTS THE WAY

Abbreviations

Abbreviation	Definition	Abbreviation	Definition
3D	3-dimensional	IEEE	Institute of Electrical and Electronics Engineers
AGS	Alternating Gradient Synchrotron	LASCO	Large Angle and Spectrometric Coronagraph
AoA	Analysis of Alternatives	LBNL	Lawrence Berkeley National Laboratory
ASIC	Application-Specific Integrated Circuit	MEAL	Mission, Environment, Application, and Lifetime
BNL	Brookhaven National Laboratory	MSU	Michigan State University
CCA	Circuit-Card Assembly	NAPAC	North American Particle Accelerator Conference
CHIPS	Creating Helpful Incentives to Produce Semiconductors	NASA	National Aeronautics and Space Administration
CMOS	Complementary Metal Oxide Semiconductor	NSREC	Nuclear and Space Radiation Effects Conference
CPU	Central Processing Unit	RHBD	Radiation-Hardened By Design
ESA	European Space Agency	SEE	Single-Event Effects
FPGA	Field Programmable Gate Array	SOHO	Solar and Heliospheric Observatory
FRIB	Facility for Rare Isotope Beams	SRAM	Static Random Access Memory
Gbit	1x10^9 bits (gigabit)	SRH	Strategic Radiation-Hardened
GCR	Galactic Cosmic Rays	SRHEC	Strategic Radiation-Hardened Electronics Council
IC	Integrated Circuit	TAMU	Texas A&M University