

Future Collider Options for US/Fermilab

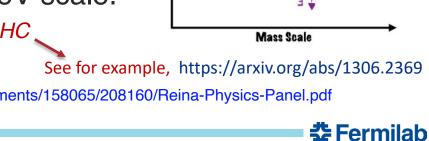
Pushpa Bhat¹, Mark Palmer² ¹Fermi National Accelerator Laboratory ²Brookhaven National Laboratory

North American Particle Accelerator Conference Aug. 8-12, 2022

Introduction

- Future Colliders are an essential component of strategic vision for particle physics. Physics at the Energy Frontier is of paramount importance!
- The U.S. has a rich history in particle accelerators and colliders, which enabled major discoveries in particle physics and establishing of the Standard Model.
- To ensure continued progress, U.S. leadership is critical
 - Needs to be a key partner in developing next generation colliders abroad
 - Develop compact, cost-effective options for hosting future colliders at home
- The US HEP Community Study, "Snowmass", that was just completed on July 25th 2022, provided a timely opportunity to explore strategies for both.

2


The Global Energy Frontier Landscape

- July saw the 10th anniversary of the discovery of the Higgs boson, a particle like none other! A lot has been learned about the Higgs at the LHC, but it is still shrouded in mystery!
- LHC/HL-LHC will be our flagship collider facility
 - An impressive physics program for the next two decades
 - Opportunities for new physics discoveries and precision measurements of the SM
- Strong consensus in the global community that an e+e- Higgs Factory should be the next global collider, and that it should be realized as soon as possible.
 - Prime candidates: ILC, (CLIC), FCC-ee, CEPC
 - Promising, novel concepts: C3, HELEN, FNAL-SF (site-filler)
- Beyond a Higgs Factory, progress at the Energy Frontier would need a high energy collider to access physics at ~10 TeV scale.

FCC-hh, ~10 TeV Muon Collider, SppC, VLHC

See Snowmass EF Summary:

https://indico.fnal.gov/event/22303/contributions/247435/attachments/158065/208160/Reina-Physics-Panel.pdf

Higgs Factory Future HE

colliders

Energy

Depends on

Coupling to SM

collide

Higgs Factory Options

- ILC: "shovel ready", but no takers so far
 - Can be operational by ~2035, and run concurrently with LHC
 - But, the goal-post keeps getting moved for ILC in Japan
- CLIC: on the backburner for now
- FCC-ee: front-runner at CERN; feasibility studies underway
 - If yes, then operations by ~2048
- CepC: Projected for ~2035; Funding uncertain/unknown
- C3: new, promising, compact, need viability demo
 - Possible operation by late 2030s
- High Gradient SRF machines: need aggressive R&D
 - Maybe possible in 2040s
- Muon Collider HF: More challenging than higher energies; 2040s – 50s
- FNAL-SF-ee: Very preliminary studies; many constraints Fermilab

Colliders for the 10-TeV scale

- FCC-hh: Prime candidate; very distant, beyond 2070
- SppC: to follow CepC, distant (2060s)
- Muon Collider (8-10 TeV and beyond)
 - Unique, challenging, need aggressive R&D and more demo
 - A great tool for both precision and energy-scale
 - Could be feasible in 2040s-50s with intense efforts
 - A good candidate for Fermilab
- VLHC: 40 TeV with 2T transmission magnets (233 km)
 - Could be a 100 km ring, say, in Chicagoland (~ FCC-hh)
- For farther future, Advanced Accelerator options would come into play.
- Intermediate Energy Options (~28 TeV Collisions):
 - HE-LHC (issues using LHC tunnel)
 - FNAL-SF-pp (proxy for HE-LHC): need aggressive magnet R&D (~25T)

🚰 Fermilab

5

Future Colliders Initiative at Fermilab

- A Future Colliders Group (FCG) was formed at Fermilab about a year ago with the following objectives:
 - Develop Fermilab's engagement plans in future collider projects, across aspects of accelerators, technology, particle physics and detectors
 - Provide a forum to synergize efforts on future colliders/accelerators across frontiers
 - **Develop a roadmap** for further (design) studies and R&D for future colliders
 - Work with US universities and other US national labs, and with international collaborators on pertinent issues and proposals
 - In the past year, the focus was to produce robust input for Snowmass.

Recent Activities:

- Snowmass Agora series on future colliders (5 events, Dec.'21- Apr. '22)
- Organized mini-workshops (e.g., C³)
- Collaborated/co-authored several Future Colliders whitepapers for Snowmass
- Produced a comprehensive summary of "Future Collider Options for the U.S." <u>https://arxiv.org/abs/2203.08088/</u>
- Proposed a national R&D program

"U.S. National Accelerator R&D Program on Future Colliders" <u>https://arxiv.org/abs/2207.06213</u>

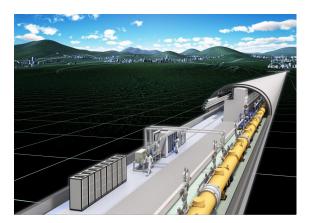
Snowmass Agora on Future Colliders

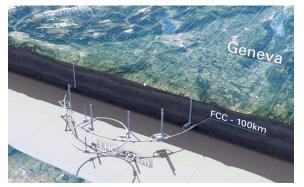
- The Fermilab Future Colliders Group organized a series of Snowmass "Agora" on Future Colliders, in conjunction with Snowmass Accelerator and Energy Frontier conveners.
 - Org. Committee:
 - M. Narain, L. Reina, A. Tricoli, S. Gourlay, T. Raubenheimer, V. Shiltsev, P. Bhat, J. Butler
- Five Agora events held from Dec. 2021 to April 2022, once a month, on Wednesdays. Each 2.5 hrs; 4-5 talks, ~1 hr moderated Q&A, 30 min. informal post-Agora chat.
 Aspects covered:

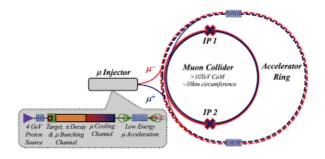
internal poor / gora onati		Aspects covered:
– Linear e+e- colliders	Dec. 15, 2021	Physics reach
 Circular e+e- colliders 	Jan. 19, 2022	Challenges and R&D required
 Muon colliders 	Feb. 16, 2022	Synergy of project with global context Synergy of project with local resources
 Circular pp and ep 	Mar. 16, 2022	Time frame (short-term R&D, long-term construction)
 Advanced colliders 	Apr. 13, 2022	Costs projections: both R&D and construction costs

- Comparative physics potential of various machines
- Intense focus on proposed machines in various categories!
 - Technical readiness or maturity status, what specifications have been achieved, remaining challenges, timelines, cost, …

🛠 Fermilab


 Slides, videos, google doc with Q&A, summary from moderators available on the indico pages. <u>https://indico.fnal.gov/e/snowmass-agora-n</u>/ (n=1,..5)


U.S. Engagement in Global Projects


- The International Linear Collider
 - U.S. scientists engaged in efforts of the ILC-IDT (ILC International Development Team)
 - SRF R&D for ILC main linacs and ILC++
 - Polarized Positron Source and Damping Ring, ..

Future Circular Colliders (FCC-ee/hh)

- CERN conducting Technical and financial feasibility studies; results and CDR++ by ~2026
- CERN/DOE agreement signed in Dec. 2020
 - Opportunities for engineering design studies, beam physics studies, High Q₀ SRF R&D, magnet R&D,...
- Muon Collider Collaboration
 - Intense work in progress in the International Muon collider Collaboration; US community engaged
 - Machine scenarios, beam induced background, neutrino radiation, demonstrator facility, detector/physics studies
 - Exploring formal U.S. engagement

Fermilab

Future Collider Options for Fermilab Site

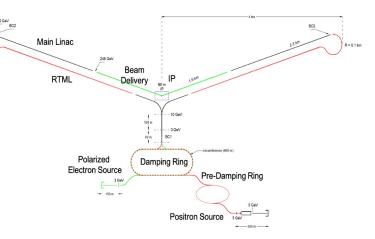
 A comprehensive whitepaper outlines several options for e+e-, μ+ μ- and pp colliders at Fermilab.

Future Collider Options for the US

P. C. Bhat, S. Jindariani, G. Ambrosio, G. Apollinari, S. Belomestnykh, A. Bross,
J. Butler, A. Canepa, D. Elvira, P. Fox, Z. Gecse, E. Gianfelice-Wendt, P. Merkel,
S. Nagaitsev, D. Neuffer, H. Piekarz, S. Posen, T. Sen, V. Shiltsev, N. Solyak,
D. Stratakis, M. Syphers, G. Velev, V. Yakovlev, K. Yonehara, A. Zlobin

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

Higgs Factories

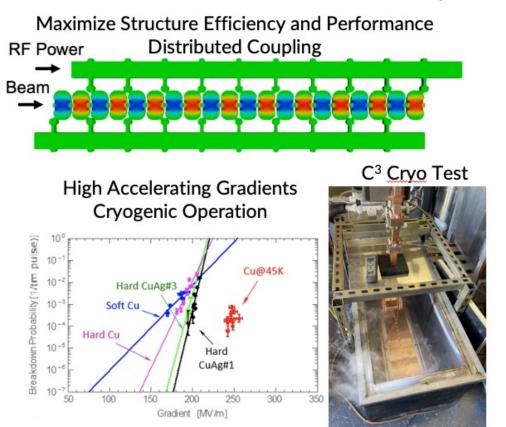

08/08/2022 P. C. Bhat, M. A. Palmer Future Collider Options at Fermilab

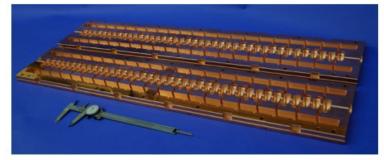
The Cool Copper Collider (CCC or C³)

🗲 Fermilab

- SLAC (E. Nanni, C. Vernieri, et al.) proposal for a normal conducting RF linear accelerator/collider operating at 77K.
 - Could reach gradient ~155 MV/m
 - 1-2e34 @250 GeV; using 70 -85 MV/m at FNAL
 - Scalable to 550 GeV at FNAL
 - RF upgrade and higher gradient (155 MV/m to fit 7 km footprint)
 - Can use lower gradient for footprint extending beyond site
 - Upgradeable to Multi-TeV if built off-site
- Benefits from other developed LC technologies
 - Beam Delivery system & IP modified from ILC
 - Damping rings and injectors to be optimized with CLIC as baseline
- Single cavity tests yield excellent results
- C³ collaboration proposing R&D stages and a 3- Cryomodule demonstrator facility
 - Collaborative R&D work between Labs, universities
 - Feasibility at Fermilab/FAST for R&D and demonstrator under study

Collider	C^3	C^3	
CM Energy [GeV]	250	550	
Luminosity $[x10^{34}]$	1.3	2.4	
Gradient $[MeV/m]$	70	120	
Effective Gradient [MeV/m]	63	108	
Length [km]	8	8	
Num. Bunches per Train	133	75	
Train Rep. Rate [Hz]	120	120	
Bunch Spacing [ns]	5.26	3.5	
Bunch Charge [nC]	1	1	
Crossing Angle [rad]	0.014	0.014	
Site Power [MW]	$\sim \! 150$	~ 175	
Design Maturity	pre-CDR	pre-CDR	


From E. Nanni

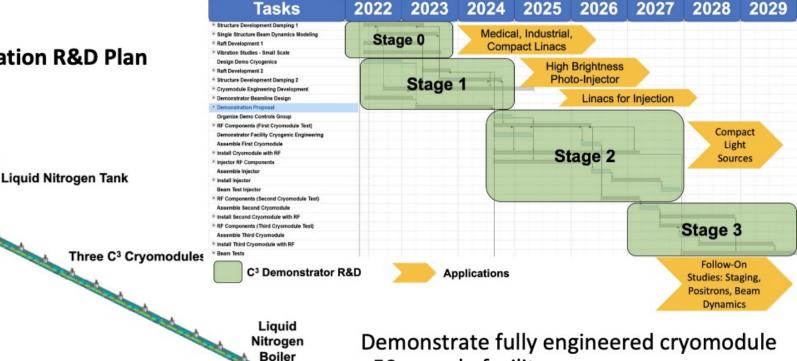

Key Technologies

Present Focus is the Main Linac In Future Expand to Rest of Complex

Modern Manufacturing Prototype One Meter Structure

Integrated Damping Slot Damping with NiChrome Coating

State of Proposal and R&D needs (5 years)


Injector

Liquid Nitrogen Insertion

and Nitrogen Gas

Extraction

Next Steps: C³ Demonstration R&D Plan

https://arxiv.org/abs/2203.09076

Spectrometer / Dump

~50 m scale facility 3 GeV energy reach

Answer technical questions needed for CDR

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Editors:

SRIDHARA DASU⁴⁴, EMILIO A. NANNI³⁵, MICHAEL E. PESKIN³⁶, CATERINA VERNIERI³⁶

Contributors:

TIM BARKLOW³⁶, RAINER BARTOLDUS³⁶, PUSHPALATHA C. BHAT¹⁴, KEVIN BLACK⁴⁴, JIM BRAU²⁹, MARTIN BREIDENBACH³⁶, NATHANIEL CRAIG⁷, DMITRI DENISOV³, LINDSEY GRAY¹⁴, PHILIP C. HARRIS²⁴, MICHAEL KAGAN³⁶, ZHEN LIU²³, PATRICK MEADE³⁶, NATHAN MAJERNIK⁶, SERGEI NAGAITSEV^{†14}, ISOBEL OJALVO³², CHRISTOPH PAUS²⁴, CARL SCHROEDER¹⁷, ARIEL G. SCHWARTZMAN³⁶, JAN STRUBE^{29,30}, SU DONG³⁶, SAMI TANTAW³⁶, LIAN-TAO WANG¹⁰, ANDY WHITE³⁸, GRAHAM W. WILSON²⁶

Endorsers:

KAUSTUBH AGASHE²¹, DANIEL AKERIB³⁶, ARAM APYAN², JEAN-FRANÇOIS ARGUIN²⁵, CHARLES BALTAY⁴⁵, BARRY BARISH¹⁹, WILLIAM BARLETTA²⁴, MATTHEW BASSO⁴¹, LOTHAR BAUERDICK¹⁴, SERGEY BELOMESTIYKH^{14,37}, KENNETH BLOOM²⁷, TULIKA BOSE⁴⁴, QUENTIN BUAT⁴³, YUNHAI CAI³⁶, ANADI CANEPA¹⁴, MARIO CARDOSO⁶, VIVIANA CAVALIERE³, SANHA CHEONG¹³⁶, RAYMOND T. CO²³,

JOHN CONWAY⁵, PALLABI DAS³², CHRIS DAMERELI³⁵, SALLY DAWSON³, ANKUR DHAR³⁶, FRANZ-JOSEF DECKER³⁶, MARCEL W. DEMARTEAU²⁸, LANCE DIXON³⁶, VALERY DOLGASHEV³⁶, ROBIN ERBACHER⁵, ERIC ESAREV¹⁷, PIETER EVERAERTS⁴¹, ANNIKA GABRIEL³⁶, LIXIN GE³⁶, SPENCER GESSNER³⁶, LAWRENCE GIBBONS¹², BHAWNA GOMBER¹⁵, JULIA GONSKI¹¹, STEFANIA GORI⁸, PAUL GRANNIS³⁶, HOWARD E. HABER⁸, NICOLE M. HARTIMAN¹³⁶, JEROME HASTINGS³⁶, MATT HERNDON¹⁴, NIGEL HESSEY⁴², DAVID HITLIN⁹, MICHAEL HOGANSON³⁶, ANSON HOOK²¹, HAOYI (KENNY) JIA⁴⁴, KETINO KAADZE²⁰, MARK KEMP³⁶, CHRISTOPHER J. KENNEN³⁶, ARKADIY KLEBANER¹⁴, CHARIS KLEIO KORAKA⁴⁴, ZENGHAI LI³⁶, MATTHIAS LIEFE¹², MIAOYUAN LIU³³, SHIVANI LOMTE⁴⁴, LAN NU¹, YANG MA³¹, THOMAS MARKIEWICZ³⁶, PETRA MERKEL¹⁴, BERNHARD MISTLBERGER³⁶, ADDOLLAH MOHAMMADI⁴⁴, DAVID MONTANARI¹⁴, CHRISTOPHER NANTISTA³⁶, MEENAKSHI NARAIN⁴,

TIMOTHY NELSON³⁶, Cho-KUEN NG³⁶, ALEX NGUYEN³⁶, JASON NIELSEN⁸, MOHAMED A. K. OTHMAN³⁶, MARC OSHERSON³³, KATHERINE PACHAL⁴², SIMONE PAGAN GRISO¹⁷, DENIS PALALER³⁶, EWAN PATERSON³⁶, RITCHIE PATTERSON¹², JANNICKE PEARKES¹³⁶, NAN PHINNEY³⁶, LUISE POLEY⁴², CHRIS POTTER²⁹, STEFANO PROFUMOl⁴⁸, TIMMAS G. RIZZO³⁶, RIVER ROBLES³⁶, AARON ROODMAN³⁶, JAMES ROSEXZWEIG⁶, MURTAZA SAFDARI¹³⁶, PIERRE SAVARO^{11,42}, ALEXANDER SAVIN⁴⁴, BRUCE A. SCHUMM¹⁸, ROY SCHWITTERS³⁹, VARUN SHARMA⁴⁴, VLADIMIR SHILTSEV¹⁴, EVGENYA SIMAKOV¹⁹, JOHN SMEDLEY¹⁹, ELMA SNIVELY³⁶, BRUNG SPATARO¹⁶, MARCEL STANITZKI¹³, GIORDON STARK¹⁸, BERND STELZER¹⁴², OLIVER STELZER-CHILTON⁴², MAXIMILIAN SWIATLOWSKI⁴², RICHARD TEMKIN²⁴, JULIA THOM¹², ALESSANDRO TRICOL³, CARL VUOSALO⁴⁴, BRANDON WEATHERFORD³⁶, GLEN

WHITe³⁶, STEPHANE WILLOCQ²⁷, MONIKA YADA^{6,18}, VYACHESLAV YAKOVLEV¹⁴, HITOSHI YAMAMOTO⁴⁰ CHARLES YOUNG³⁶, LILING XIAO³⁶, ZLIUN XU³⁶, JINLONG ZHANG¹, ZHI ZHENG³⁶

More Details Here (Follow, Endorse, Collaborate): https://indico.slac.stanford.edu/event/7155/

SLAC-PUB-17660 April 12, 2022

C³ Demonstration Research and Development Plan

Editors:

EMILIO A. NANNI⁶, MARTIN BREIDENBACH⁶, CATERINA VERNIERI⁶, SERGEY BELOMESTNYKH^{2,7}, PUSHPALATHA BHAT² AND SERGEI NAGAITSEV^{2,10}

Authors:

MEI BAI⁶, TIM BARKLOW⁶, ANKUR DHAR⁶, RAM C. DHULEY², CHRIS DOSS⁹, JOSEPH JURIS⁶, AURALEE EDELEN⁶, CLAUDIO EMMA⁶, JOSEF FRISCH⁶, ANNIKA GABRIEL⁶, SPENCER GESSNER⁶, CARSTEN HAST⁶, ARKADIY KLEBANER², ANATOLY K. KRASNYKH⁶, JOHN LEWELLEN⁶, MATTHIAS LIEPE¹, MICHAEL LITOS⁹, JARED MAXSON¹, DAVID MONTANARI², PIETRO MUSUMECI⁸, CHO-KUEN NG⁶, MOHAMED A. K. OTHMAN⁶, MARCO ORIUNNO⁶, JENNIS PALMER⁶, J. RITCHIE PATTERSON¹, MICHAEL E. PESKIN⁶, THOMAS J. PETERSON⁶, JI JIANG³, JAMES ROSENZWEIG⁸, VLADIMIR SHILTSEV, EVGENYA SIMAKOV⁴, BRUNO SPATARO⁵, EMMA SNIVEL^{K⁶}, SMI TANTAWI⁶, BRANDON WEATHERFORD⁶, AND GLEN WHITE⁶

Cornell University Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Los Alamos National Laboratory National Laboratory of Frascati, INFN-LNF SLAC National Accelerator Laboratory, Stanford University Stony Brook University University of Colorado, Boulder 'University of Chicago

Additional Contributors

Mitchell Schneider Charlotte Whener Gordon Bowden Andy Haase Julian Merrick Bob Conley Radiabeam Cici Hanna Zariq George Valery Borzenets

> SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

MEI BAI, TIM BARKLOW, RAINER BARTOLDUS, MARTIN BREIDENBACH^{*}, PHILIPPE GREMER, ZHIRONG HUANG, MICHAEL KAGAN, ZENGHAI LI, TIIOMAS W. MARKIEWICZ, EMILIO A. NANNI^{*}, MAMDOUI NASR, CHO-KUEN NG, MARCO ORIUNNO, MICHAEL E. PESKIN^{*}, THOMAS G. RIZZO, ARIEL G. SCHWARTZMAN, DONG SU, SAMI TANTAWI, CATERINA VERNIERI^{*}, GLEN WHITE, CHARLES C. YOUNG

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

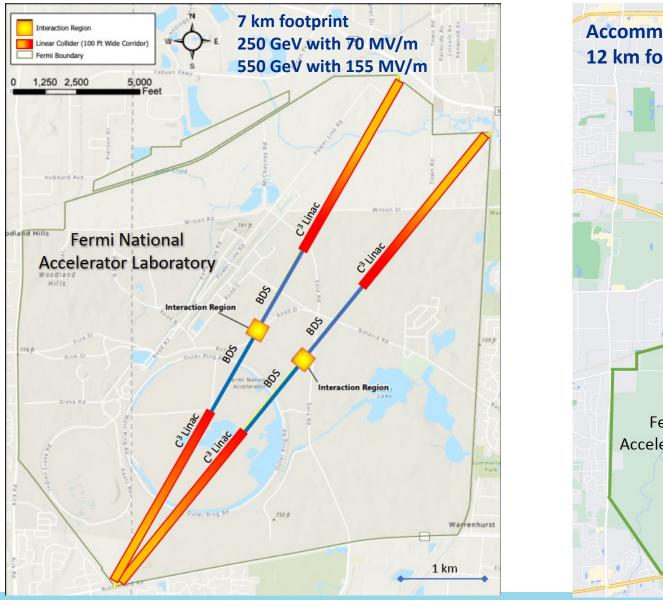
John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

JAMES ROSENZWEIG

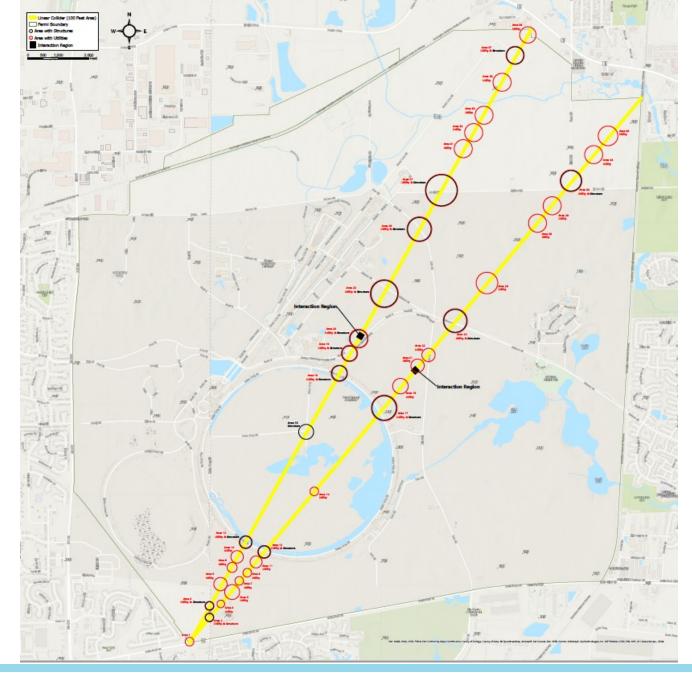
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

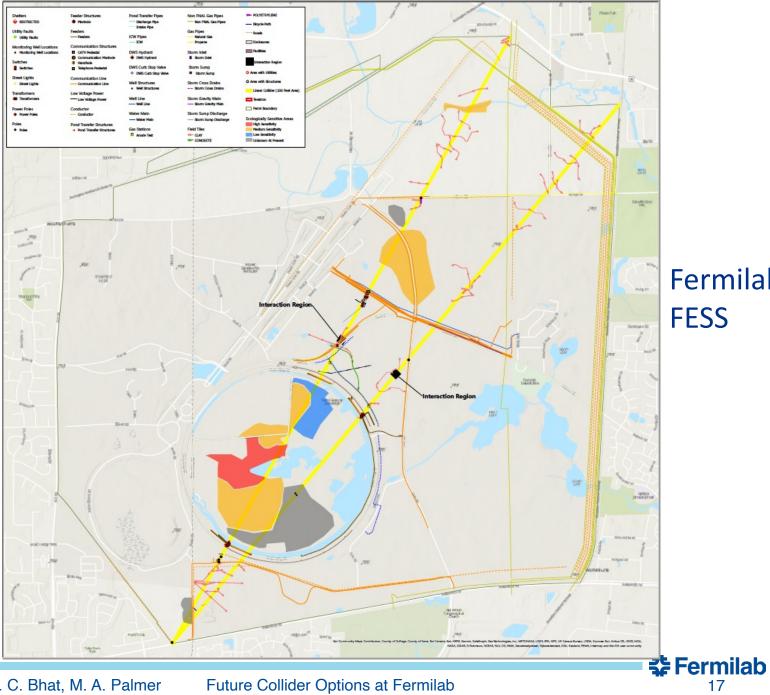
Bruno Spataro


INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

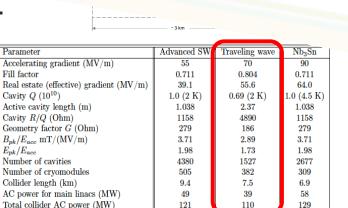
Fermi National Accelerator Laboratory, Batavia IL 60510-5011


C³ Siting Options at Fermilab

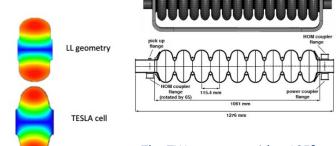

Accommodates up to 12 km footprint C³ Linac BDS Interaction Region BDS Fermi National Accelerator Laboratory Linac 3 1 km Google

15

08/08/2022 P. C. Bhat, M. A. Palmer F


Fermilab FESS studying proposed siting

Fermilab **FESS**


Higgs Energy LEptoN (HELEN) Collider

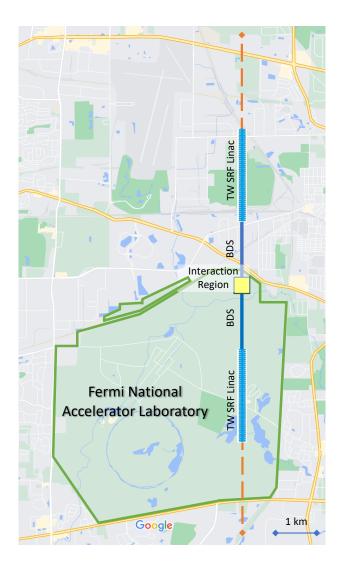
- HELEN is a linear collider based on high gradient SRF (in the range of 55 MV/m to 90 MV/m standing wave or travelling wave structures).
- There has been steady progress in SRF technology with gradients up to 50 MV/m demonstrated while ILC design is 31.5 MV/m.
- Further improvements in gradients can be expected with aggressive R&D.
- Three options considered
 - Advanced geometry standing wave (SW) structure operating at 55 MV/m. Advanced cavity shape and new treatment recipes should allow reaching accelerating gradients of ~60 MV/m. This would be essentially the ILC with different SRF cavities operating at a higher gradient.
 - Baseline option: TW structure operating at 70 MV/m.
 The traveling wave option assumes an accelerating gradient of 70 MV/m.
 - Nb₃Sn structure operating at 90 MV/m.

e^re⁻ Damping Ring

Central Region

Comparison of SW SRF cavity shapes

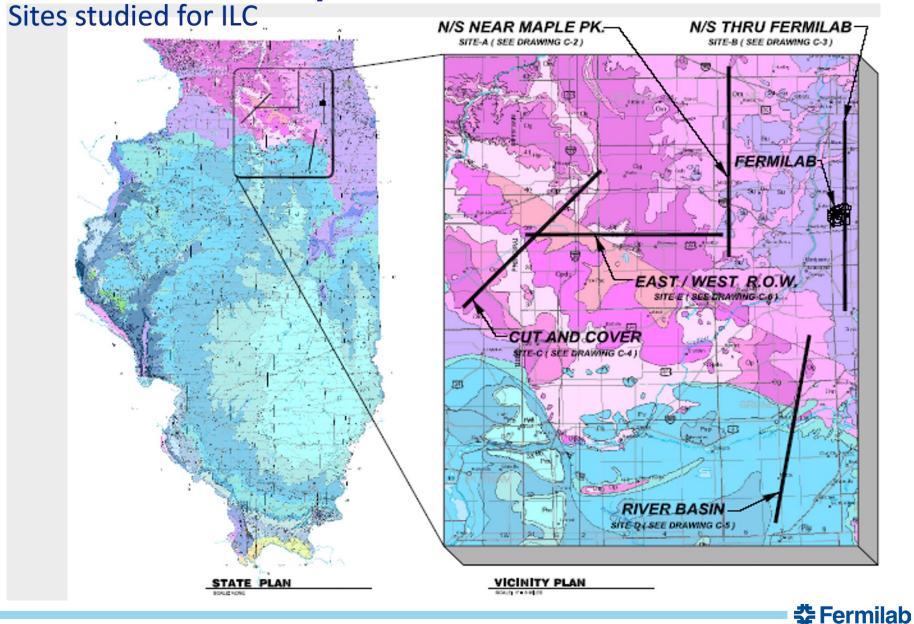
The TW structure with a 105° phase advance per cell compared to the one-meter standing-wave TESLA structure


HELEN Higgs Facotry

Parameter	HELEN	C^3	ILC	CLIC
CM energy $2 \times E_{\rm b}$ (GeV)	250	250, 550	250, 500	380, 3000
Length (km)	7.5	8, 8	20.5, 31	11.4, 50
Interaction points	1	1	1	1
Integrated luminosity (ab^{-1}/yr)	0.2	0.2, 0.4	0.2, 0.3	0.1, 0.6
Peak lumi. $\mathcal{L} (10^{34} \text{cm}^{-2} \text{s}^{-1})$	1.35	1.3, 2.4	1.35, 1.8	1.5, 6
CM energy spread ~ $0.4\delta_{BS}$ (rms, %)	1	1.6, 7.6	1, 1.7	1.7, 5
Polarization (%)	$80/30~(e^-/e^+)$	tbd	$80/30~(e^-/e^+)$	$80/0~(e^-/e^+)$
Rep.rate $f_{\rm rep}$ (Hz)	5	120	5	50
Bunch spacing (ns)	554	5.26, 3.5	554	0.5
Particles per bunch N (10 ¹⁰)	2	0.63	2	0.52, 0.37
Bunches per pulse $n_{\rm b}$	1312	133, 75	1312	352, 312
Pulse duration (μs)	727	0.7, 0.26	727	0.176, 0.156
Pulsed beam current $I_{\rm b}$ (mA)	5.8	190, 286	5.8	1670, 1190
Bunch length σ_z (rms, mm)	0.3	0.1	0.3	0.07, 0.044
IP beam size σ^* (rms, μ m)	H: 0.52	H: 0.23, 0.16	H: 0.52, 0.47	H: 0.15, 0.04
	V: 0.0077	V: 0.004, 0.0026	V: 0.0077, 0.0059	V: 0.003, 0.001
Emittance, ε_n (rms, μ m)	H: 5	H: 0.9	H: 5, 10	H: 0.95, 0.66
Emittance, ε_n (rms, μ m)	V: 0.035	V: 0.02	V: 0.035, 0.035	V: 0.03, 0.02
Ot at interaction a cint (march)	H: 13	H: 12	H: 13, 11	H: 8, 6.9
β^* at interaction point (mm)	V: 0.41	V: 0.12	V: 0.41, 0.48	V: 0.1, 0.068
Full crossing angle $\theta_{\rm c}$ (mrad)	14	14	14	20
Crossing scheme	crab crossing	crab crossing	crab crossing	crab crossing
Disruption parameter D_y	35	12	35, 25	13, 8
RF frequency $f_{\rm RF}$ (MHz)	1300	5712	1300	11994
Accelerating gradient E_{acc} (MV/m)	70	70, 120	31.5	72,100
Effective gradient E_{eff} (MV/m)	55.6	63, 108	21	57, 79
Total beam power (MW)	5.3	4, 4.9	5.3, 10.5	5.6, 28
Site power (MW)	110	$\sim 150, \sim 175$	111, 173	168, 590
Key technology	TW SRF	cold NC RF	SW SRF	two-beam accel.

Higgs-Energy LEptoN (HELEN) Collider based on advanced superconducting radio frequency technology

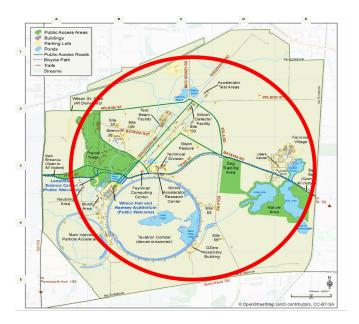
S. Belomestnykh^{*1,2}, P.C. Bhat¹, A. Grassellino¹, M. Checchin¹, D. Denisov³,
 R.L. Geng⁴, S. Jindariani¹, M. Liepe⁵, M. Martinello¹, P. Merkel¹, S. Nagaitsev¹,
 H. Padamsee^{1,5}, S. Posen¹, R.A. Rimmer⁶, A. Romanenko¹, V. Shiltsev¹,
 A. Valishev¹, and V. Yakovlev¹


¹Fermi National Accelerator Laboratory, Batavia, IL, USA
 ²Stony Brook University, Stony Brook, NY, USA
 ³Brookhaven National Laboratory, Upton, NY, USA
 ⁴Oak Ridge National Laboratory, Oak Ridge, TN, USA
 ⁵Cornell University, Ithaca, NY, USA
 ⁶Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

08/08/2022 P. C. Bhat, M. A. Palmer Future Collider Options at Fermilab

ILC Site options in the US/Fermilab

20


Circular Fermilab Site Filler e+e-

Design Strategy

- Circular FNAL site filler ; 16 km ring

FNAL-SF-ee

- Limit synchrotron radiation power to 2x50 MW
- One IP; few bunches with high bunch current
 - minimize beam-beam tune shift
 - Reduce chromaticity

	Higgs Factory	Z factory
Circumference [km]	16	16
Beam energy [GeV]	120	45.6
Total synchrotron radiation power [MW]	100	60
Beam current [mA]	5.	140
$N [10^{11}]$	8.3	1.67
Number of bunches	2	279
β_x^* [m] / β_y^*	$0.2 { m m} / 1 { m mm}$	0.2 m / 1 mm
$\epsilon_x \ / \ \epsilon_y \ [nm]$	$21 \ / \ 0.05$	$26.1 \ / \ 0.065$
$\sigma_z [\mathrm{mm}]$	2.9~(SR)	6.45
beam-beam tune shift per IP	0.075/0.11	$0.032 \ / \ 0.045$
RF frequency [MHz]	650	650
RF voltage [GV]	12	0.24
Momentum acceptance (RF) $[\%]$	± 3	± 9
$ au_{bs}$ [min]	9 - 36	
τ_{Bhabha} [min]	8.7	37
\mathcal{L} per IP [10 ³⁴ cm ⁻² s ⁻¹]	1.0	6.3
Production cross-section	200 fb	61 nb
Particle production/year	Higgs: 39751	Z: 7.64 $\times 10^{10}$

Recent Updates on FNAL-SF-ee

- Introduce crossing angle
- $\beta_x^* \sim 10 \text{ mm}, \beta_y^* = 0.0005 \text{ m}$
- ξ_y~0.14
 - → L ~4 x 10^{34} cm⁻² s⁻¹ at \sqrt{s} =240 GeV (HF)

🚰 Fermilab

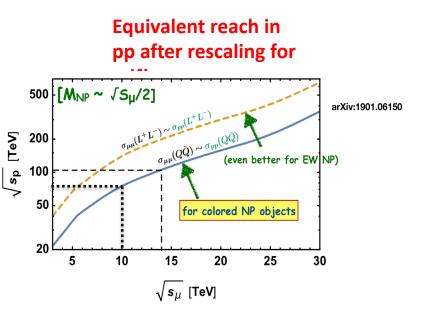
22

Challenges:

. . .

- <u>IR optics with small β_{v}^{*} </u>, control non-linear chromaticity, sufficient dynamic aperture, energy acceptance
- <u>Top-up injection</u> needed due to low beam lifetime (successful at PEP and KEKB)
- Synchrotron radiation effects
- <u>Vacuum system</u> to deal with SR
- <u>RF systems</u>: high efficiency, frequency choices, positioning along the ring
- <u>Vert. emittance:</u> minimize growth

08/08/2022 P. C. Bhat, M. A. Palmer Future Collider Options at Fermilab


Multi-TeV Colliders

08/08/2022 P. C. Bhat, M. A. Palmer Future Collider Options at Fermilab

Muon Collider

- There has been an explosion of interest recently in the collider community!
- A Compact collider for multi-TeV scale
- A precision and discovery machine!
 - Excellent precision for Higgs coupling measurements
 - Great direct reach for new physics
 - * 10 TeV $\mu^+\mu^- \cong$ 70 TeV pp
 - * 10 TeV $\mu^+\mu^- \cong$ 150 TeV pp for EW
- Technologically challenging, exciting, with unique opportunities for innovation
- Can be staged with physics at each stage:
 - Demonstrator facility, Higgs Factory, (nuSTORM), Multi-TeV Collider
- Intense ongoing work in the new
 International Muon Collider Collaboration and Snowmass Muon Collider Forum

125 GeV to 8 TeV (10 TeV?) Muon collider can fit on Fermilab site

- Machine scenarios, beaminduced background,
 - neutrino radiation,
- detector/physics simulations

Muon Collider at Fermilab

Site Filler (10 TeV collider)

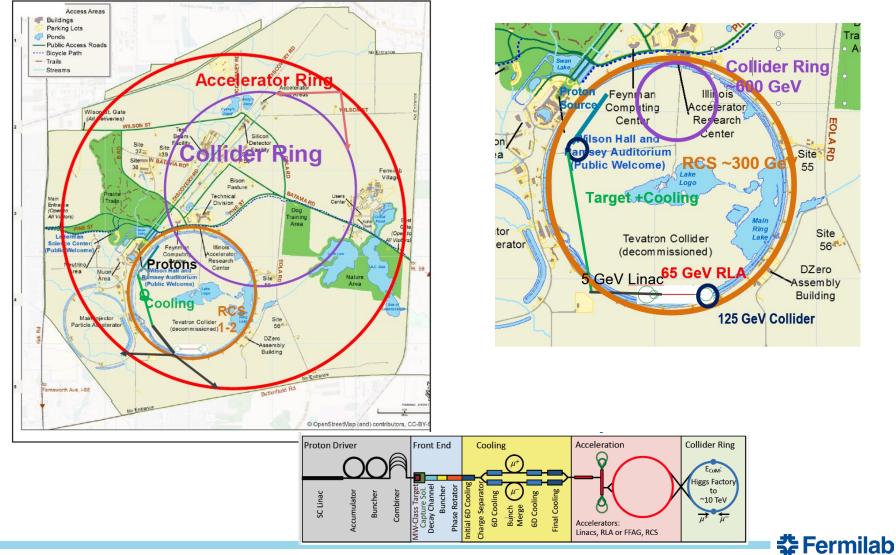
125 GeV and 600 GeV staging options

LA RD

Site

DZero

ssembly


Building

56

25

Site

55

P. C. Bhat, M. A. Palmer 08/08/2022

Future Collider Options at Fermilab

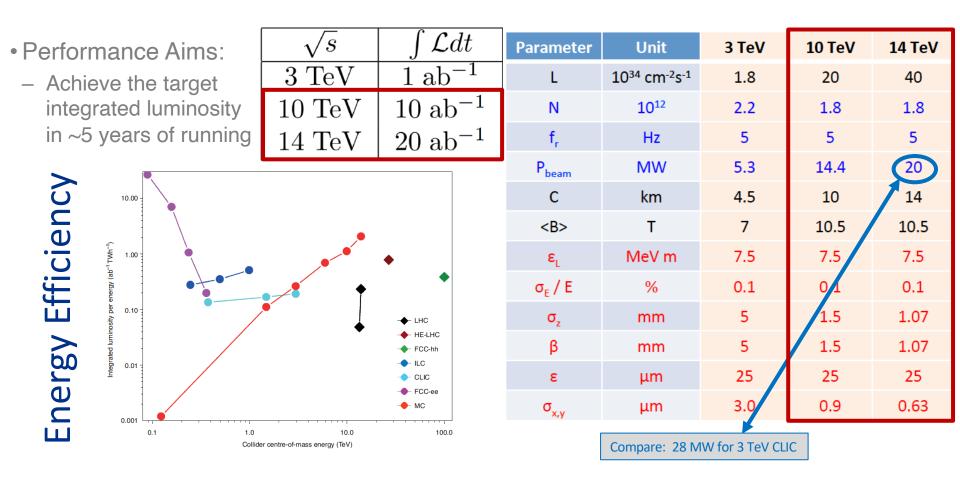
Muon Collider (Contd.)

RAST, Vol 10, No. 01, pp. 189-214 (2019)

+ D. Neuffer

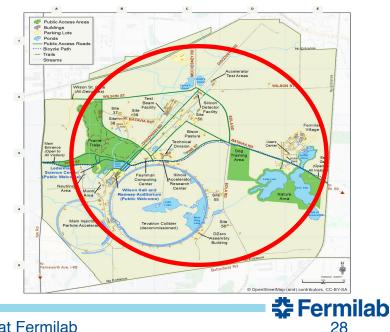
Muon Collider Parameters. √s = 0.126 - 6 TeV					
Parameter	Units	Higgs 0.126 TeV	Top 0.35 TeV	3 TeV Collider	6 TeV Collider
Circumference	km	0.3	0.7	4.5	6
Ring Depth	m	135	135	135	540
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	0.6	4.4	12
# of IPs		1	1	2	2
b* _{x.v}	cm	1.7	0.5	0.3 - 3	0.25
# of Muons/bunch	10 ^{12.}	4	3	2	2
Trans. Emittance, e _T	p-mm-rad	0.2	0.05	0.025	0.025
Long emittance, e _L	p-mm-rad	1.5	10	70	70
Bunch Length	cm	6.3	0.5	0.5	0.2
Proton driver power	MW	4	4	4	1.6
Wall Plug Power	MW	200	203	230	270
# of Higgs/10 ⁷ s		13,500	60,000	200,000	820,000
Max Mag. Field	Т	8	8	10	16
RF	MV	6000	10000	15000	30000

Planned development of Fermilab accelerator complex for LBNF/DUNE will provide a robust infrastructure for a future muon collider


 Multi-MW proton beam with PIP-II linac and Booster replacement

Synergy with neutrino program via nuSTORM in the initial phase, and with precision physics program

Parameter Sets for the International MC Collaboration



A Compact Hadron Collider

- Prime candidates for Hadron Colliders beyond HL-LHC are the FCC-hh (physics in 2070s) and SPPC (projected 2060s)
- A Compact Hadron Collider at Fermilab
 - Site Filler (16 km ring, 24-28 TeV); need > 24 T LTS/HTS or IBS magnets
 - Intermediate step to FCC and test bed for high field magnet use
 - Planned development of the complex provide a robust injector infrastructure.
 - The new machine can be an injector to a future VLHC (100 km or 233 km pp collider.)
 - Cheaper, high-field magnets critical.

A Compact Hadron Collider

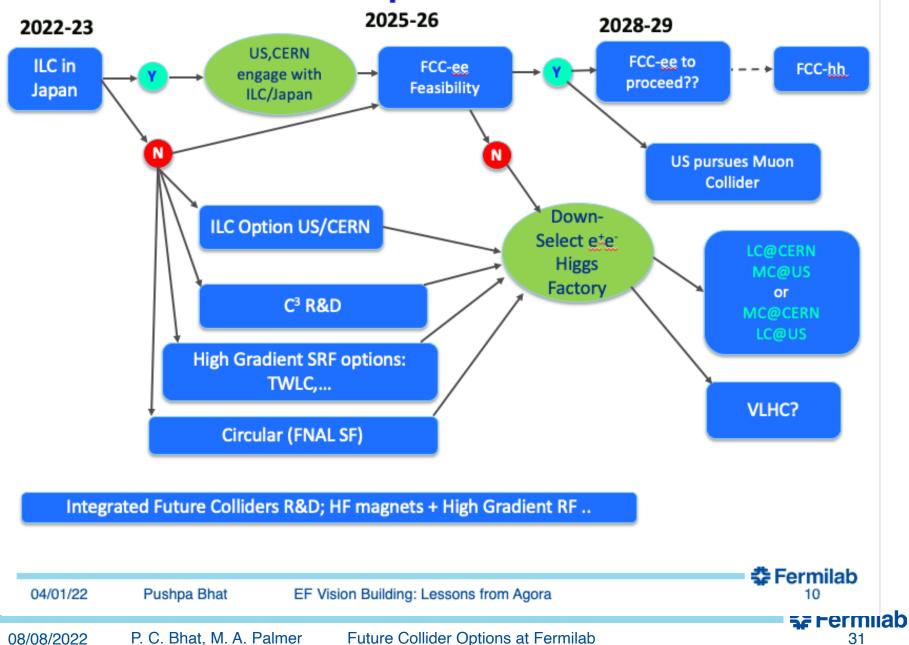
•	FNAL-SF numbers T. Sen			
parameter	FNAL SF	HE-LHC	FCC-hh	
collision energy cms [TeV]	24	27	100	
dipole field [T]	24.4	16	16	
circumference [km]	16	26.7	97.8	
beam current [A]	0.41	1.12	0.5	
bunch intensity [10 ¹¹]	1.05	2.2	1 (0.2)	1
bunch spacing [ns]	25	25	25 (5)	25
IP b [*] _{x,y} [m]	0.5, 0.5	0.45	1.1	0.3
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	15	5	30
peak #events/bunch crossing	135	800	170	1020
stored energy/beam [GJ]	0.26		8.4	
synchrotron rad. [W/m/beam]	3.9	3.74	30	
transv. emit. damping time [h]	1.8		1.1	
initial proton burn off time [h]	3.5	3.0	17.0 3.4	

‡ Fermilab

29

pp Collider Challenges

- High field dipole magnets
 - Requires fields above 20 T and also high field quality
- Interaction region magnets
 - Must withstand debris power from pp interactions
- Machine protection
 - Very high beam energy and magnetic energy, improved & sophisticated collimation required
- High synchrotron radiation
 - Impact on components, cryogenic system, radiation hard electronics
- Beam dynamics issues
 - Electron cloud effects, beam-beam interactions (head-on and long-range) & compensation, instabilities, crab cavity operation,
- <u>Cost</u>: ??


Key Challenge:

High Field Magnet Technology

- Current record for Nb3Sn Magnet:
 - 16.5 T on conductor, 14.5 T magnet w/ 60 mm aperture
 - Attempts at 17-18 T ongoing
- Hybrid w/ HTS insert R&D
 - Results in the next couple of years
 - 20-25 T demo in the next 10 years
- US Magnet Development Program
 - Advance technology, improve performance, reduce cost
- IBS magnet research promising for >20T but early days
 - Need aggressive R&D
 - Might provide cheap and robust HF magnet option

A Roadmap for the Decade

A National Accelerator R&D Initiative on Future Colliders

- The U.S. HEP accelerator R&D program currently has no support for development of collider concepts for strategic planning.
 - Compromises U.S. leadership
- An integrated national R&D program on future colliders is proposed to address this shortcoming in the U.S. accelerator R&D.
- The overarching objective: Address in an integrated fashion the technical challenges of promising future collider concepts, particularly those aspects of accelerator design, technology, and beam physics that are not covered by the existing General Accelerator R&D (GARD) program.
- The goal is to inform decisions in down-selecting among the collider concepts by the next European strategy update and the next US community planning cycle
 - help move towards realization of the next collider as soon as possible (e+e- Higgs Factory)

🔁 Fermilab

32

 help to subsequently advance towards a collider at a higher energy scale (to probe Multi-TeV scale)

Closing Remarks

- Snowmass energy frontier discussions focused on the need to:
 - Realize an e+e- Higgs Factory as soon as possible
 - Work towards an energy frontier collider to access the ~10 TeV scale
- To help realize this vision, a *national accelerator R&D* program on future colliders has been proposed
 - Would enable concerted efforts for U.S. engagement in FCC, ILC and IMCC
 - Would allow exploration of collider concepts suitable for future siting in the U.S.
- Exploration of relatively compact colliders that might be realized on modest time scales and costs in the U.S. should prove beneficial to the field (and have spin-offs)!

The most surprising thing that emerged from Snowmass was an <u>overwhelming sentiment to engage in hosting a</u>
<u>future collider in the US</u>
<u>Highlights and Messages from the Snowmass Summer Study.
<u>Prisca Cushman</u>
July 26, 2022
</u>

33

Extra Slides

08/08/2022 P. C. Bhat, M. A. Palmer Future Collider Options at Fermilab

July 14, 2022

U.S. National Accelerator R&D Program on Future Colliders

P.C. BHAT^{1,†}, S. BELOMESTNYKH^{1,5}, A. BROSS¹, S. DASU⁶, D. DENISOV⁴, S. GOURLAY⁷,
S. JINDARIANI¹, A.J. LANKFORD^{8,†}, S. NAGAITSEV^{1,2,†}, E.A. NANNI³, M.A. PALMER⁴,
T. RAUBENHEIMER³, V. SHILTSEV¹, A. VALISHEV¹, C. VERNIERI³, F. ZIMMERMANN⁹

¹Fermi National Accelerator Laboratory
²University of Chicago
³SLAC National Accelerator Laboratory
⁴Brookhaven National Laboratory
⁵Stony Brook University
⁶ University of Wisconsin, Madison
⁷Lawrence Berkeley National Laboratory, Retired
⁸ University of California, Irvine
⁹CERN

 † Lead Contacts; Email: pushpa@fnal.gov, and rew.lankford@uci.edu, nsergei@fnal.gov

lab

Scope of the Proposed Program

Scope:

- Sharply focused on future colliders
 - Address challenges for next colliders (e.g., Higgs factories) and for collider concepts for ~10 TeV-scale machines
- Spans accelerator design, technology and full concept development
- Complements the existing HEP GARD program
- Multifaceted but selective, and synergistic
 - Support multiple approaches but be selective among R&D topics in a way that leads to converging on viable option(s)

🗲 Fermilab

36

- Cost-effective, opportunity for technical benefits, innovation
- Integrates all critical R&D for a concept
 - Enable full development of collider concepts
- Priorities guided by P5

Organization and Coordination

Organization:

- Coherent national program
 - Key: Advance developments and preparedness for future colliders
 - Program's portfolio of activities centrally selected, coordinated
 - Guided by P5 and an Advisory Committee/Board
- Collaborative effort of U.S. national labs and universities
 - Funding allocations through proposals/review process
- Coordination:
 - Centrally coordinated and funded
 - Management hosted at a national lab
 - Coordinated with global design studies and R&D
 - Avoid duplication of efforts, engage in complementary R&D

🗲 Fermilab

37

- Periodic assessment
 - Of coherence of activities, specifications

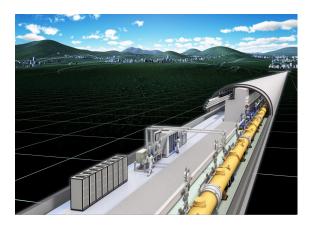
Summary

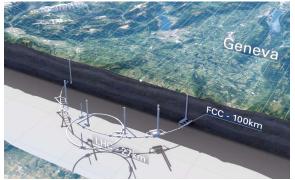
- In order to position the U.S. as a key player in future HEP facilities, whether hosted abroad or in the U.S., the proposed U.S. national accelerator R&D program focused on future colliders is essential.
- The potential scope of the program, and how it could be organized and coordinated are outlined.

https://arxiv.org/pdf/2207.06213.pdf

Engagement in Global Projects

The International Linear Collider


- Fermilab scientists engaged in efforts of the ILC-IDT (ILC International Development Team)
 - SRF R&D for ILC main linacs and ILC++
 - Polarized Positron Source and Damping Ring
 - Physics, detectors are of great interest


Future Circular Colliders (FCC-ee/hh)

- CERN conducting Technical and financial feasibility studies; results and CDR++ by ~2026
- CERN/DOE agreement signed in Dec. 2020
 - Opportunities for engineering design studies, beam physics studies, High Q₀ SRF R&D, magnet R&D,...
 - Physics studies for Snowmass; EF work on detector, FastML technologies relevant

Muon Collider Collaboration

- Intense work in progress in the International Muon collider Collaboration, Snowmass Muon Collider Forum
 - Machine scenarios, beam induced background, neutrino radiation, demonstrator facility, detector/physics studies

Future Circular Colliders @CERN

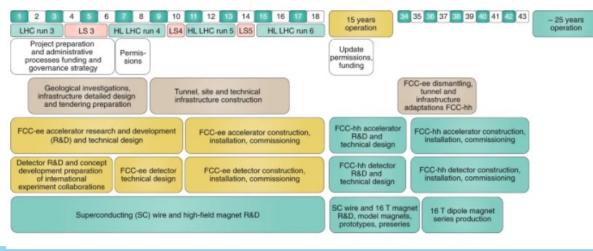

- As per the 2020 European Strategy update, the FCC Study is now focused on investigating the technical and financial feasibility of a ~100 TeV pp collider at CERN in a 100 km ring, with an e+e- Higgs and electroweak factory as a first stage
 - FCC(ee) followed by FCC(hh)
- Highest priority studies:
- □ tunnel: high-risk zones, surface areas, administrative processes, environment
- □ machines: R&D (e.g. superconducting RF for FCC-ee; magnets for FCC-hh); design
 - \rightarrow Goal is CDR++ with results of feasibility studies by ~ 2026.

Fig. 1: Technical schedule of the FCC integrated project.

~ 70 years timeframe

🚰 Fermilab

40

08/08/2022 P. C. Bhat, M. A. Palmer Future Collider Options at Fermilab

P5 (2013) Recommendations

 Recommendation 1: Pursue the most important opportunities wherever they are, and host unique, world-class facilities that engage the global scientific community.

ILC:

Recommendation 11: Motivated by the strong scientific importance of the ILC and the recent initiative in Japan to host it, the U.S. should engage in modest and appropriate levels of ILC accelerator and detector design in areas where the U.S. can contribute critical expertise. Consider higher levels of collaboration if ILC proceeds.

FCC:

 Recommendation 24: Participate in global conceptual design studies and critical path R&D for future very high-energy proton-proton colliders. Continue to play a leadership role in superconducting magnet technology focused on the dual goals of increasing performance and decreasing costs.

41