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Why is Machine Learning Becoming More Popular?

2. Annual Size of the Global Datasphere

1. Rise of GPU Computing

3. Open-Source Machine 
Learning Community

*https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
1https://blogs.nvidia.com/blog/2017/05/24/ai-revolution-eating-software/
2https://medium.com/analytics-vidhya/the-5-vs-of-big-data-2758bfcc51d
3https://devopedia.org/deep-learning-frameworks

*“ML is a branch of AI which 
focuses on the use of data and 
algorithms to imitate the way 
that humans learn, gradually 
improving its accuracy.”

ML in a Nutshell:



4

Why Machine Learning at SNS?
• What we have?

– Incomplete models
– Large datasets

SNS

• What is needed?
– Reduced downtime
– Preventive actions
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Machine Learning Use Cases at SNS and
Important Performance Metrics

Receiver Operating 
Characteristic (ROC) curveBES Grant, PI: Sarah Cousineau

Use cases to utilize ML:
1. Beam-based: 

• Predict errant beam
2. High Voltage Converter Modulators:

• Predict component failure
3. Target: 

• Improve useful life
4. Cryogenic Moderator System: 

• Controller for failure prevention
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Use Case #1: Predict Errant Beam w/ Existing Sensors
Goal: Prevent cavity damage and avoid system downtime

Use 
before 
pulse as 
abnormal

DCM archives 25 pulses 
before errant

Differential Current Monitor 
(DCM) to protect SCL from beam 

loss damage (2013)*
*Blokland, Willem, and Peters, Charles C. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* 
ACCELERATOR. IBIC 2013 conference proceedings, pp921 to 924, Oxford, United Kingdom, Sep 16, 2013 - Sep 19, 2013

Build a ML model to predict whether the 
macropulse leads to an errant beam!

Single macropulse
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Anomaly Types and Aimed Model Performance

• Success criteria for ML:
à identify more than half of the errant beams (TPR ≥ 50%)
à with an allowed misclassification of 1 in 2000 pulses  (FPR ≤ 0.05%)

1111 events: Beam loss in the SCL 1100 events: Beam loss upstream or 
aborted by another device

Longer 
downtime

More
occurence
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Early Works Show Promising Accuracy for Anomaly 
Detection

K-Nearest Neighbor Method Random Forest Method 

Models can identify errant beams, but number of 
misclassified normal beams are unacceptable.
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Siamese Neural Networks Compare Signals and Learn 
Similarities

Model Overview: 
Pulse #1

Pulse #2

Pulse #1
Encodings

Pulse #2
Encodings

h(pulse1)

h(pulse2)

0.02

similarity 
score

Lower the similarity score,
more similar two pulses are! 
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Deterministic Siamese Model Successfully Identify 
Errant Beams with Acceptable Misclassification Rate

*Blokland, W., Ramuhalli, P., Peters, C., Yucesan, Y., Zhukov, A., Schram, M., ... & Jeske, T. (2021). Uncertainty aware anomaly detection to predict errant beam 
pulses in the SNS accelerator. arXiv preprint arXiv:2110.12006.
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With TPR~65% at FPR<0.05% model performs satisfactorily,
but lacks confidence in predictions! 
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Probabilistic Siamese Model Incorporate Gaussian 
Approximation to Provide Prediction Uncertainty

*Blokland, W., Ramuhalli, P., Peters, C., Yucesan, Y., Zhukov, A., Schram, M., ... & Jeske, T. (2021). Uncertainty aware anomaly detection to predict errant beam 
pulses in the SNS accelerator. arXiv preprint arXiv:2110.12006.
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• Anomaly types not seen by model have high uncertainty
• TPR slightly drops but we have tight confidence bounds
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Field Implementation of Siamese and RF allow 
us to validate models w/ real-time data

Similar?
Similarity

Normal_1

Normal_N

Beam pulse

Uncertainty

• Installed duplicate DCM (DCML) 
• Implement Siamese model on DCML RT
• Implement RF on FPGA
• Analyze all incoming beam current waveforms

Multiple inferences with different 
references per beam pulse

Beam pulse

Normal_N Pulse-by-pulse analysis on up/down 
stream both Siamese and RF

Once the implementation is completed, 
online validation can be done
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Investigating Artifacts Observed w/ Online Inference
First beam after empty pulse 

inferred as dissimilar
Model predicts anomaly 
when rep rate is not 60Hz

Mean similarity 
score

Heat map for 
inferences using 

20 references 

Duration 
between two 

pulses

End goal is to use the model to abort the accelerator and 
reduce overall downtime caused by errant beams!
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Use Case #2: High Voltage Converter Modulator Prognostics

Transistor failure due to 
transformer saturation

1. Problem

2. Method

ConvLSTM AutoEncoder for anomaly detection 

3. Results

TPR > 50% at low FPR zone

*WEPA38 - Progress on Machine Learning for the SNS High Voltage Converter Modulators.

*Radaideh, M. I., Pappas, C., Walden, J., Lu, D., Vidyaratne, L., Britton, T., ... & Cousineau, S. Time Series Anomaly 
Detection in Power Electronics Signals with Recurrent and Convlstm Autoencoders. Available at SSRN 4069225.
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Use Case #3: Improve Target Lifetime with ML

Complex 
degradation process 
to predict target life 

1. Problem 2. Method

Model calibration flowchart

3. Results

*WEPA37 - Benchmarking and Exploring Parameter Space of the Rayleigh-Plesset Model for Liquid Mercury Target Simulation

*Radaideh, M. I., Tran, H., Lin, L., Jiang, H., Winder, D., Gorti, S., ... & Cousineau, S. (2022). Model Calibration of the Liquid Mercury 
Spallation Target using Evolutionary Neural Networks and Sparse Polynomial Expansions. arXiv preprint arXiv:2202.09353.
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Surrogate models 
calibrated to 

match experiments
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Use Case #4: Cryogenic Moderator System ML Controller

Long system recovery 
time due to CMS trips

1. Problem

~1h

3. Results

Using simulation to 
generate more data

2. Method

Constructing model 
to simulate system

End goal: build an ML-based controller to tune system 
parameters to prevent CMS trips.
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Summary
Machine Learning to Improve SNS Reliability

• Errant beam detection validated offline with Siamese and RF models
• We are going online to test real-time inference!
• Once online validation completed, we can abort the beam using 

model predictions and contribute to the operations!
• Three other use-cases with significant progress

– HVCM model also being deployed for online validation
– Target model is improved to include more design parameters
– Cryo system has many unknowns and not as much data as we like

Thank you for your attention!

Questions?
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BACKUPS
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Machine Learning in a Nutshell

“AI leverages computers and machines to mimic the 
problem-solving and decision-making capabilities of 
the human mind.”

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP
LEARNING

“ML is a branch of AI which focuses on the use of data 
and algorithms to imitate the way that humans learn, 
gradually improving its accuracy.”

“DL as a subset of ML use neural networks with hidden 
layers to learn from vast amount of data.”

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
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Why Machine Learning at SNS
• Not all problems are (can be) well defined or understood

– System not well understood (cryo loop), models incomplete (target, HVCM)
– Large data sets that are hard or not suitable to process with classical methods

• Many improvements have 
been made over the years, 
but we still have downtimes à
can ML decrease downtimes 
even further?
– Proton Power Upgrade
– Second Target Station

SNS downtime statistics



21

Machine Learning Types
Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning

• Classification

ü Diagnostics
ü Fraud detection

• Regression

ü Prognostics
ü Weather 

forecasting

• Clustering

ü Customer 
segmentation

• Dimensionality
Reduction

ü Structure 
discovery

• Dynamic 
Programming

ü Robot 
navigation

• Environment-
based

ü Game AI

Labeled inputs and outputs Unlabeled data Rewards system

• Slides from tutorial at SNS complete with demo code
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Backbone of ML: Artificial Neural Networks
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Neural Networks Training: Forward and Backward Pass
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… ……

𝑤𝑤!
𝑤𝑤"

• Outputs and ground truth data used to 
calculate the loss function

• Selection of the loss function depends 
on the problem:
• Mean Squared Error
• Mean Absolute Error
• KL – Divergence
• Maximum Likelihood

Deterministic

Probabilistic Λ = 𝑦𝑦 − +𝑦𝑦 "
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𝑎𝑎"• Gradients calculated using 
chain rule

• Loss and activation functions 
must be differentiable (or have 
the gradients provided)

Backward

Forward

Lambda = loss function
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Machine Learning Performance Metrics
• Concepts:

– ROC curve: Receiver Operating Characteristic 
curve is a graphical plot that illustrates the 
diagnostic ability of a binary classifier system 
as its discrimination threshold is varied.

– True Positive Rate (TPR) = TP/P = TP/(TP+FN)
• TP= True Positives, P = Positives, FN = False Negative

– False Positive Rate (FPR) = FP/N = FP/TN+FP
• FP=False Positives, N=Negatives
• For SNS: FPR = FP/N ≈ FP(N+P) as N>>P

We want low FP or FPR and high TP or TPR
ROC curve showing the 

performance of the ML method
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ML Projects at SNS Accelerator and Target

• PhD Student Miha Rescic (Huddersfield University, Rebecca Seviour) 

1. Errant beam prediction using beam current data (2015)

• BES Grant, PI: Sarah Cousineau
1. Beam-based: Predict errant beam, classify equipment faults
2. Target: Improve target modeling to increase lifetime
3. HVCM: Predict failure and prognostics to determine component lifetime remaining
4. CMS: Better controller algorithm to reduce downtime
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Use Case #1: Predict Errant Beam w/ Diagnostic Data
• Goal

– Prevent cavity damage and avoid equipment down times

• Approach
– Expensive to install diagnostics per equipment. But equipment affects beamà leaves fingerprint 
– Use existing diagnostics à Differential Beam Current Monitor

• Archives at full rep rate (LabVIEW FPGA and RT) when beam is aborted

Use before 
pulse as 
abnormal

DCM archives not only errant beam 
pulses but also up to 25 pulses before 

and two after à the before pulse 
becomes the “abnormal” class pulse

Differential Current Monitor to protect 
SCL from beam loss damage (2013)*
*Blokland, Willem, and Peters, Charles C. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* 
ACCELERATOR. IBIC 2013 conference proceedings, pp921 to 924, Oxford, United Kingdom, Sep 16, 2013 - Sep 19, 2013
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Aimed Model Performance TPR > 50% & FPR < 0.05%
• The DCM archives data:

1. When (Downstream – Upstream) > threshold 
• Beam loss in the SCL: 1111 events

2. When the pulse is truncated
• Beam loss upstream or aborted by another device: 1100 events

• Metrics: How well should ML perform
– March 2021, production was 26.4 days, 1.5% beam lost 

• 0.22% beam lost due to SCL beam loss
• 1.30% beam lost due to truncated beam 

– We need to predict a fraction of the errant pulses: TPR ≈  50%
– We shouldn’t add much down-time due to false positives

• An insignificant amount would be 0.2% of beam pulses
• but penalty is 4 pulses per abort 

à we want to achieve a FPR ≈ 0.05% Trip statistics derived from 
DCM data
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Method
– K-Nearest Neighbor Method using different distance functions L1, L2, and CC

Results
– Up to 75% success rate but very high FPR

à While there is indication that we find precursors, we abort too much beam

K-NN: Assign new data point class based on 
distance to training set data points

Credit: Wikipedia

K-NN Plot: Very typical of K-NN is to get better success 
when increasing K at first but eventually for large K it will 
mimic the ratio of good and bad pulses

Early Works by Miha: K-NN Method
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Beam-based: Errant Beam Work by Miha*
Method

– Random Forest classifier with 100 estimators
– Improvements: PCA, FFT, Voting, different dataset sizes

Results
– No SCL beam loss: 40/233 predicted trips, 6531 false 

alarms
– SCL beam loss: 20/27  predicted trips, 4133 false alarm
– (~5,184,000 pulses per day)

We predict 75% of SCL beam loss pulses with ~0.2% *4 of 
good beam aborted. 

ROC curve with preprocessing

Credit: Wikipedia

*M. Reščič, R. Seviour, W. Blokland, Improvements of pre-emptive 
identification of particle accelerator failures using binary classifiers and 
dimensionality reduction,, NIM-A,Volume 1025, 2022, 166064,ISSN 0168-
9002, https://doi.org/10.1016/j.nima.2021.166064.
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Beam-based: Next Phase 

• Approaches
– Beam Position Monitor phase data:

• Map upstream to downstream to detect abnormal 
pulses. If mapped version differs from measured, then 
we have an abnormal condition

– Differential Current Monitor data:
• Identify the faulty equipment using labeled Machine 

Protection System (MPS) data
• Siamese twin model to detect abnormal beam pulses
– This model looks at similarities of two inputs and provides you 

with a similarity value

BPM phase turn-by-turn data

Beam current waveform
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How Random Forest on FPGA Voting Works?
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Siamese Neural Networks Compare Signals and Learn 
Similarities

• By using a reference pulse from the training set, 
we can compare a normal pulse to a normal 
reference pulse to see if they are still similar (if 
not, retrain)

• We can run multiple inferences of same pulse 
versus multiple references to majority vote

• Similarity allows to classify pulses not seen 
before

Siamese Model: 

DCM data: 60 Hz pulses sampled at 
100 MS/s
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Alternative Approach: Promising Performance w/ BPM Phase Data
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⇒ 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⇒ 𝑵𝑵𝑵𝑵𝑬𝑬𝑵𝑵𝑬𝑬𝑵𝑵

Precursors of fault 30 
pulses before beam trip!

Cross-validated model 
performance on target FPR
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Beam-based; Equipment Fault Classification
Goal: identify the equipment causing errant beam 

• Unsupervised Clustering:

Signals
Confusion Matrix

…

• Convolutional Neural Networks (CNNs):
Training Test

In progress:
•Ok for finding 

anomalies à
might be ok for 
equipment 
classes

Use gradCAM* to generate 
heatmaps and see if heatmaps are 
different for different equipment

• Siamese model:

In progress:
•Weak 

classification 
performance
•Overfitting

Example of clusters

*Gradient-weighted Class 
Activation Mapping246

508 264

343

5917

32 3217

834
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Sustainable ML Framework Underway for SNS

Cloud VM

Computing 
Server

File Server

Data

Model
Registry

FPGA

DCML

Infrastructure 
Design

TensorFlow

LabView

sklearn

FPGA

Managing model lineage, 
hyperparameters, routine 

validation tests, new features
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High Voltage 
Converter Modulators
HVCM Issue:
• Capacitor degradation 

during the pulse time causes 
anomalies in the signals, 
that could potentially lead 
to catastrophic failure.  
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HVCM
• Research: How to minimize downtime due 

to the modulator 

• Approach:
– Abort beam before failure
– Prognostics: predict component health. 

Capacitors slowly drop in capacitance over a 
periods of years, then fail suddenly

• Status:
– Initial ML NN predicted HVCM failure

• But we had a high FPR >10% à promising there is info in 
the waveforms

– SPICE model of HVCM to research effect of 
capacitor values on measured waveforms

– Second approach with LSTM and Conv1D

Transistor failure due to 
transformer saturation

Failure prediction

70% True Positive Rate
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HVCM
ML Technique: Self-constructors: 

• Used mainly for dimensionality reduction, image noise removal, and 
anomaly detection (or binary classification). Latent space represents 
most important features. One type is the auto-encoder.
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HVCM
• Recurrent neural networks perform well in time 

sequences.
• Train on normal data to make it reproduce 

normal data. If the output waveform is not 
close to the input waveform, then we have an 
anomalous waveform. 

• Conv1D will help to improve the latent space 
features.

• LSTM (Long Short Term Memory) will properly 
capture the time-series dynamics.

à Improved FPR but need more statistics

Radaideh, M. I., et al. "Time Series Anomaly Detection in Power 
Electronics Signals with Recurrent and ConvLSTM
Autoencoders." Digital Signal Processing (2022): Under 
Review.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=406
9225

Improved auto-encoder layout
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Neural Net modeling of waveform:

Step 2: Training: Neural Network (NN) learns the 
relationship between capacitor values and 
waveforms

Step 1: Generate SPICE simulation data 

Step 3: Testing: determine component value. 
E.g. simulated waveform capacitance 

estimate of 1609 pF versus 1550 pF.

HVCM: Prognostics

• Plan:
– Determine effect of other circuit 

parameters: charge voltage, switching 
frequency and the transformer 
leakage inductances. This is where we 
expect ML to show its strengths.
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Target Machine Learning
• Research: How to increase target lifetime

• Approach:
– Use surrogate model to get faster simulation

• Develop multi-phase physics model for mercury with gas bubbles 
• Match strain measurements to verify the simulation based on model(Sierra with 

VUMAT)
• Train ML surrogate using polynomial approximations

• Status:
– Using HPC resources to execution model-based simulation and train 

surrogate
• Multiple different surrogate models are tested to identify the best metric and best 

model for the problems and design parameters

Shroud

Mercury 
vessel
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Front sensors die after few 
days of operation due to 
radiation damage reducing 
our diagnostics data
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Target:  Inverse Problem 

q Now: Equation of State Model for cavitation in mercury (3 
unknown parameters)

q Future: Rayleigh-Plesset Model for general bubble 
dynamics (8 parameters)

x1: Tensile cutoff threshold (Pa)
x2: Mercury Density (kg/m3)
x3: Mercury Speed of Sound (m/s)

Initial focus on the 3-parameter model&

We can use an accurate calibrated simulation to carry fatigue 
analysis and estimate target life and maintenance times* *Mach, Justin, et al. "Fatigue analysis of the Spallation 

Neutron Source 2 MW target design." Nuclear Instruments 
and Methods Section A 1010 (2021): 165481.

&Radaideh, M. I., et al. “Bayesian Inverse Uncertainty Quantification of the Physical Model Parameters for 
the Spallation Neutron Source First Target Station”. https://arxiv.org/abs/2202.03959, Accepted in Results in 
Physics

Inverse Problem: find the model parameters (x) to minimize the difference between the measurements 
and the model
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Target: Surrogate Model*

*Radaideh, M. I., et al., (2022). Model Calibration with Evolutionary Neural 
Networks and Sparse Polynomial Expansions: Application to Mercury Spallation 
Target Solid Mechanics, Nuclear Instruments and Methods in Physics Research 
Section B, Under Review.
https://arxiv.org/abs/2202.09353

The method has four major parts:
1. Neural networks act as surrogate model to 

replace the expensive Sierra code. 
2. Sensor data collected from the target.
3. External optimization algorithm (e.g. 

genetic algorithms). 
4. Objective function brings 1-3 together. 

The objective function applies to the simulation 
parameters that make simulation and data 
close. 

Iteration

Max

O
bjective Function V

a
lue

Min
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Cryogenic Moderator System Excessive turbine fluctuation

Long system
recovery time

H2 loops where trips registerturbine in the He loop

• Research: how to avoid long CMS trips 

• Approach:
– Not a lot of data to apply ML for predictions

• Use simulation to generate data

– Improve whole system modeling by 
combination of model and data-driven ML 
techniques

– ML-based controller
• Status:

– Building of the CMS model

System layout

H2 loop EcoSimPro
model
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CMS: thermal-hydraulic and data-driven models

EcoSim Simulation


