ONLINE ACCELERATOR TUNING WITH ADAPTIVE BAYESIAN OPTIMIZATION

NIKITA KUKLEV (ADVANCED PHOTON SOURCE, ANL, USA)
Yine Sun
Michael Borland
Hairong Shang
Greg Fystro

THXD4 NAPAC 2022 August 11, 2022

ML AND ACCELERATORS

Accelerator performance requirements continue to increase

- Tighter tolerances
- New physics
- Fast reconfiguration

Machine learning (ML) methods a promising solution

- Anomaly detection/prediction
- Optimization
- Fast heuristics (surrogate models)

ACCELERATOR OPTIMIZATION

Many approaches with various tradeoffs

Humans

Classic methods

Artificial Intelligence

Machine Learning

Deep Learning

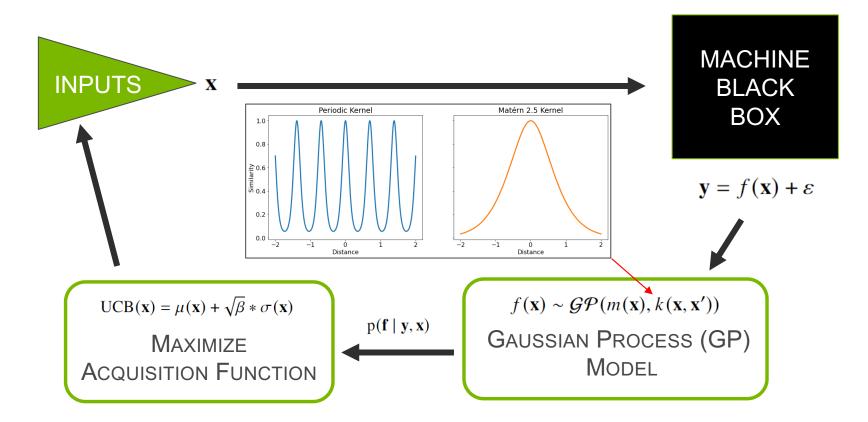
Nelder-Mead Simplex RCDS Extremum Seeking

Genetic Algorithm
Particle Swarm

Bayesian Optimization

Reinforcement Learning
Deep Kernel Learning

BAYESIAN OPTIMIZATION

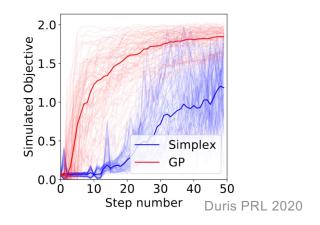


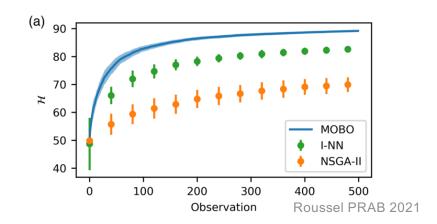
BAYESIAN OPTIMIZATION

Bayesian optimization (BO) a promising method for expensive problems

- Model-based and can encode expert knowledge
- Interpretable and scalable

Previous work showed good performance in time-invariant tasks





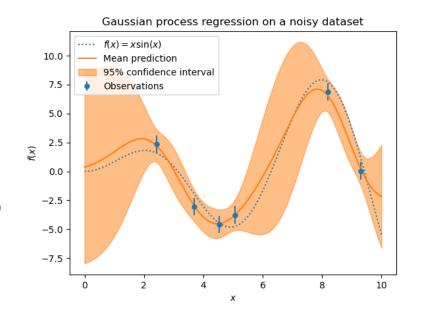
ADAPTIVE BAYESIAN OPTIMIZATION

Many accelerators have time-dependent performance: f(t,x)

- External factors (temperature, etc.)
- Device drift / degradation

A challenge for conventional BO

- Without time model, drift appears as noise
- Convergence to average suboptimal state
- Common solution run local optimizer after BO
- Can drift be modelled explicitly?

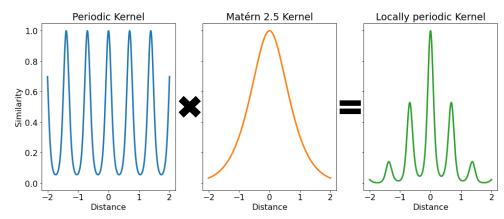


ADAPTIVE BAYESIAN OPTIMIZATION KERNEL

Consider time as another 'input' - has very different properties

- Periodic on various timescales (minutes, hours, days)
- Overall linear/polynomial trends

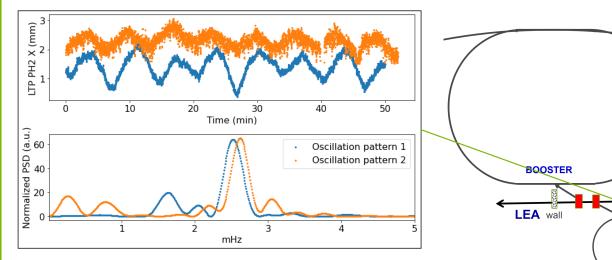
Can compose sub-kernels along any subspace - what is the right one?

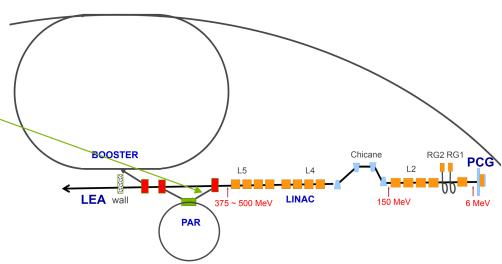


ADAPTIVE ML MOTIVATION @ APS

APS injector supplies beam to storage ring and linac extension area

- Proportional feedback used to compensate drifts but has high jitter
- Drift spectrum varies day to day requires time-aware and time-adaptive control





ADAPTIVE BAYESIAN OPTIMIZATION KERNEL

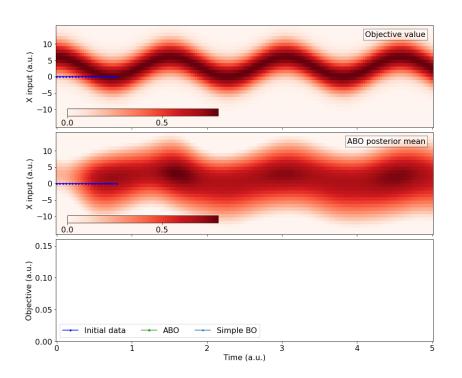
ABO choice: Spectral Mixture Kernel

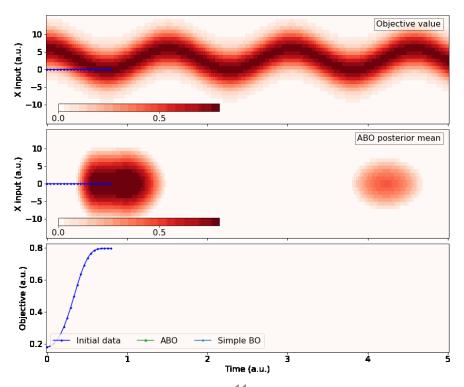
- Express as spectral density of several Gaussians
- Can approximate any stationary kernel
- Starting point for Deep Kernel Learning

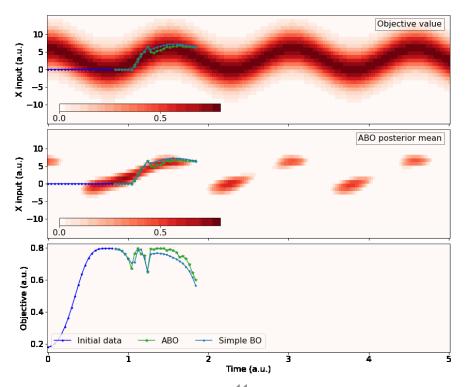
$$k(au) = \int S(s) e^{2\pi i s^T au} ds,$$

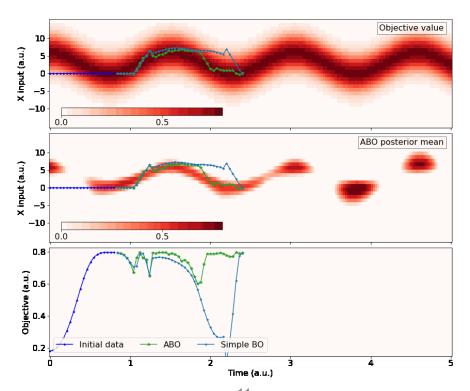
$$S(s) = \sum_{i=1}^Q w_i^2 \left[\mathcal{N}(s|\mu_i, \sigma_i^2) + \mathcal{N}(s|-\mu_i, \sigma_i^2)
ight].$$

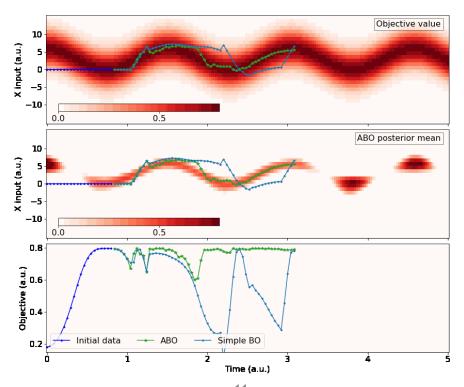
Final model
$$k_{ABO}(t, t', x, x') = (k_{SM}(t, t') + k_l(t, t')) \times \sigma^2 k_{Mt}(\mathbf{x}, \mathbf{x}')$$

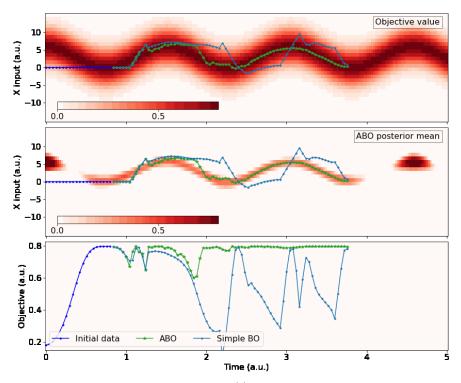






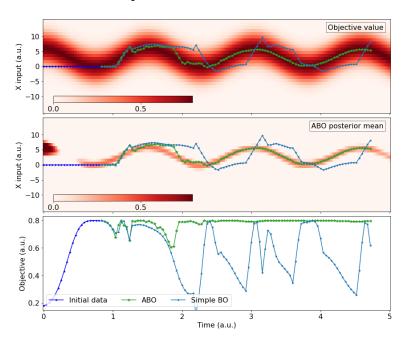


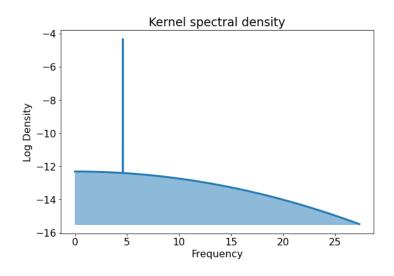




ABO finds correct oscillation within 1 period

Kernel density reflects broad noise + oscillation frequency

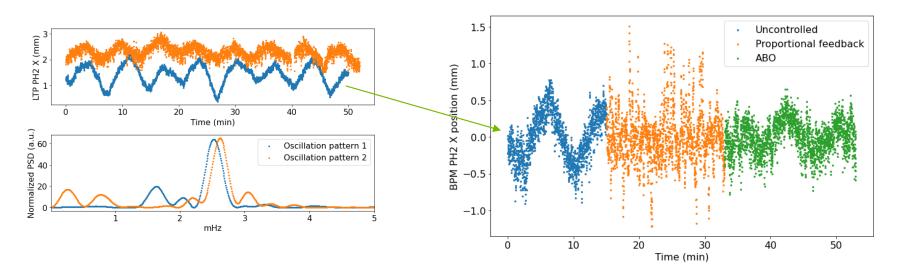




CONTINUOUS USE CONSIDERATIONS

	Performance	Safety
_	Needs to run faster than drift rate Poor complexity scaling (N³)	Must respect constraints Must behave conservatively
Considered	Old data cutoff Sparse GP Scalable GPU methods	Constrained acquisition functions
ABO	Time-biased bandpass importance subsampling See TUPA24 for related digital twin model work	Constraint auxiliary models Slew rate + hard limits Proximity bias

RESULTS - EXPERIMENT



Several tests in APS linac – trajectory MSE objective

- 10s cycle limit
- Train with last 20 minutes of history

Overall 2x jitter improvement (0.21/0.36/0.33)!

OPERATIONAL IMPLEMENTATION

We are developing libraries to work with operational APS systems

- APSopt optimizer algorithms + SDDS toolkit command line interface
- pySDDS native SDDS format reader/writer
- pybeamtools soft IOC, surrogate model, and archiver interface

Can make end-to-end virtual accelerators, test with real data, and deploy operationally

CONCLUSION

Adaptive ML key in enabling long-term operational use

ABO a good adaptive optimizer when:

- Both optimization and stabilization are desired
- Drift likely explained by (unknown) model

Future work:

- Better use of extra inputs (i.e. air temperature) and historic data we have 20 years!
- Integration with local optimization methods
- Transition to full deep kernel learning

