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ML AND ACCELERATORS

Accelerator performance requirements continue to increase
— Tighter tolerances
— New physics
— Fast reconfiguration

Machine learning (ML) methods a promising solution
— Anomaly detection/prediction
— Optimization
— Fast heuristics (surrogate models)
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ACCELERATOR OPTIMIZATION

Many approaches with various tradeoffs
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BAYESIAN OPTIMIZATION
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BAYESIAN OPTIMIZATION

Bayesian optimization (BO) a promising method for expensive problems
» Model-based and can encode expert knowledge
» |nterpretable and scalable

Previous work showed good performance in time-invariant tasks
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ADAPTIVE BAYESIAN OPTIMIZATION

Many accelerators have time-dependent performance
= External factors (temperature, etc.)
= Device drift / degradation

10.0 A

A challenge for conventional BO 50 ]
= Without time model, drift appears as noise o 251
= Convergence to average suboptimal state 001

Common solution — run local optimizer after BO

Can drift be modelled explicitly?

: f(t,x)

Gaussian process regression on a noisy dataset

~~~~~ fix) = xsin(x)
—— Mean prediction

95% confidence interval
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ADAPTIVE BAYESIAN OPTIMIZATION KERNEL

Consider time as another ‘input’ - has very different properties
= Periodic on various timescales (minutes, hours, days)
= Qverall linear/polynomial trends

Can compose sub-kernels along any subspace - what is the right one?
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ADAPTIVE ML MOTIVATION @ APS

APS injector supplies beam to storage ring and linac extension area
» Proportional feedback used to compensate drifts but has high jitter
= Drift spectrum varies day to day - requires time-aware and time-adaptive control
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ADAPTIVE BAYESIAN OPTIMIZATION KERNEL

ABO choice: Spectral Mixture Kernel .

« Express as spectral density of several Gaussians ~ “(7) = / S(s)e”™ 7ds,
= Can approximate any stationary kernel

= Starting point for Deep Kernel Learning Z“’ (slpi 07) + N (s] = pi, 07)]

Final model  kago(t.t".x.x") = (ksp (t,1") + ki(.1")) X 0 kars (X, X)
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

ABO finds correct oscillation within 1 period
= Kernel density reflects broad noise + oscillation frequency
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CONTINUOUS USE CONSIDERATIONS

Performance Safety
Needs to run faster than drift rate Must respect constraints
Poor complexity scaling (N3) Must behave conservatively
o
o
Q
=
72)
c
o
o
8 Time-biased bandpass Constraint auxiliary models
< importance subsampling Slew rate + hard limits
See TUPA24 for related digital twin model work Pr0X|m |ty blaS
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RESULTS - EXPERIMENT
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Several tests in APS linac — trajectory MSE objective
= 10s cycle limit

= Train with last 20 minutes of history

Overall 2x jitter improvement (0.21/0.36/0.33)!
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OPERATIONAL IMPLEMENTATION

We are developing libraries to work with operational APS systems

= APSopt — optimizer algorithms + SDDS toolkit command line interface
= pySDDS - native SDDS format reader/writer
= pybeamtools — soft |IOC, surrogate model, and archiver interface

Can make end-to-end virtual accelerators, test with real data, and deploy operationally
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CONCLUSION

Adaptive ML key in enabling long-term operational use

ABO a good adaptive optimizer when:
= Both optimization and stabilization are desired
= Drift likely explained by (unknown) model

Future work:

= Better use of extra inputs (i.e. air temperature) and historic data — we have 20 years!
» |ntegration with local optimization methods

» Transition to full deep kernel learning
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THANK YOU!
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