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ML AND ACCELERATORS
Accelerator performance requirements continue to increase

– Tighter tolerances
– New physics
– Fast reconfiguration

Machine learning (ML) methods a promising solution
– Anomaly detection/prediction
– Optimization
– Fast heuristics (surrogate models)
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ACCELERATOR OPTIMIZATION
Many approaches with various tradeoffs

3

Classic
methods

Artificial
IntelligenceHumans Machine

Learning Deep Learning

Nelder-Mead Simplex
RCDS

Extremum Seeking

Genetic Algorithm
Particle Swarm

Bayesian
Optimization

Reinforcement Learning
Deep Kernel Learning

THIS TALK



BAYESIAN OPTIMIZATION
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BAYESIAN OPTIMIZATION
Bayesian optimization (BO) a promising method for expensive problems
§ Model-based and can encode expert knowledge
§ Interpretable and scalable

Previous work showed good performance in time-invariant tasks
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ADAPTIVE BAYESIAN OPTIMIZATION
Many accelerators have time-dependent performance: f(t,x)
§ External factors (temperature, etc.)
§ Device drift / degradation

A challenge for conventional BO
§ Without time model, drift appears as noise
§ Convergence to average suboptimal state
§ Common solution – run local optimizer after BO
§ Can drift be modelled explicitly?
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Consider time as another ‘input’ - has very different properties
§ Periodic on various timescales (minutes, hours, days)
§ Overall linear/polynomial trends 

Can compose sub-kernels along any subspace - what is the right one?

ADAPTIVE BAYESIAN OPTIMIZATION KERNEL
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K1 * K2 = LOGICAL AND

K1 + K2 = LOGICAL OR



ADAPTIVE ML MOTIVATION @ APS
APS injector supplies beam to storage ring and linac extension area 
§ Proportional feedback used to compensate drifts but has high jitter
§ Drift spectrum varies day to day - requires time-aware and time-adaptive control
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ABO choice: Spectral Mixture Kernel
§ Express as spectral density of several Gaussians
§ Can approximate any stationary kernel
§ Starting point for Deep Kernel Learning

ADAPTIVE BAYESIAN OPTIMIZATION KERNEL
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Final model



RESULTS - SIMULATION
Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

12

ABO finds correct oscillation within 1 period
§ Kernel density reflects broad noise + oscillation frequency



CONTINUOUS USE CONSIDERATIONS
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Performance

Needs to run faster than drift rate
Poor complexity scaling (N3)

Safety

Must respect constraints
Must behave conservatively
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Constrained acquisition functions

Time-biased bandpass 
importance subsampling

Constraint auxiliary models
Slew rate + hard limits

Proximity biasSee TUPA24 for related digital twin model work



RESULTS - EXPERIMENT

Several tests in APS linac – trajectory MSE objective
§ 10s cycle limit
§ Train with last 20 minutes of history
Overall 2x jitter improvement (0.21/0.36/0.33)!
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OPERATIONAL IMPLEMENTATION

We are developing libraries to work with operational APS systems

§ APSopt – optimizer algorithms + SDDS toolkit command line interface
§ pySDDS – native SDDS format reader/writer
§ pybeamtools – soft IOC, surrogate model, and archiver interface

Can make end-to-end virtual accelerators, test with real data, and deploy operationally
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CONCLUSION
Adaptive ML key in enabling long-term operational use

ABO a good adaptive optimizer when:
§ Both optimization and stabilization are desired
§ Drift likely explained by (unknown) model

Future work:
§ Better use of extra inputs (i.e. air temperature) and historic data – we have 20 years!
§ Integration with local optimization methods
§ Transition to full deep kernel learning

16



THANK YOU! 


