Modelling H- Injection and Painting in Vertical and Horizontal FFAs Using OPAL

C. T. Rogers*, A. Adelmann
*chris.rogers@stfc.ac.uk

Albuquerque, New Mexico, August 2022

Science and Technology Facilities Council ISIS Neutron and Muon Source

FFAs for high power proton machines

- Acceleration of high power protons comes in 3 flavours
 - Cyclotrons
 - Linacs
 - Synchrotrons
- Cyclotrons
 - No pulsed magnets → energy efficiency
 - Large magnet apertures
- Fixed Field Accelerators (FFAs) are like cyclotrons, but
 - Increase bending field with momentum → more compact
- FFAs have never been used for high power proton acceleration
 - Proposed as an option for ISIS upgrade in ~ 2030s
 - Would like to test concepts in small prototype ring
 - 4 m radius
 - 3-12 MeV energy
 - Short injection straights → challenging injection

Horizontal and vertical FFAs

- Two types of FFA considered in this talk
 - Horizontal orbit excursion (hFFA)

$$B_z(r,\phi,z=0) = B_0(\psi) \left(\frac{r}{r_0}\right)^{\kappa}$$

$$\psi = \phi - \tan(\delta) \ln(r/r_0)$$

- Beam moves horizontally as momentum increases
- Vertical orbit excursion (vFFA)

 $\vec{B} = \vec{B}_0(r,\phi)\exp(mz)$

- Beam moves vertically as momentum increases
- Strongly coupled optics
- FFAs not isochronous
 - Variable frequency RF
 - High power \rightarrow accumulate a beam
 - Charge exchange injection
 - Phase space painting

Charge Exchange Injection + Painting

- Ion source generates Hydrogen atoms with an extra electron
 - "H-" ions
- Accelerate and inject H- on top of circulating proton beam
 - H- and protons pass through a dipole at different angles \rightarrow merge
 - Pass H- through a thin Carbon foil
 - H- are ionised leaving protons
- Painting the beam enables build up of different beam shapes
 - Inject H- at distance from the circulating proton beam core
 - Develop different beams e.g. "correlated" and "anti-correlated"
- Goal: minimise protons passing through foil
- Eventually move beam off foil for acceleration

Object Oriented Parallel Particle Library (OPAL)

OPAL is a versatile open-source tool for charged-particle optics in large accelerator structures and beam lines including 3D EM field calculation, collisions, radiation, particle-matter interaction, and multi-objective optimisation

https://gitlab.psi.ch/OPAL/src/wikis/home

- OPAL is built from the ground up as an HPC application
- OPAL runs on your laptop as well as on the largest HPC clusters
- OPAL uses the MAD language with extensions
- OPAL is written in C++, uses design patterns, easy to extend
- The OPAL Discussion Forum:

https://psilists.ethz.ch/sympa/info/opal

- International team of 11 active developers and a user base of O(100)
- The OPAL sampler command can generate labeled data sets using the largest computing resources and allocations available

The Active OPAL Developer Team

y Tecnológicas

Features Implemented in OPAL

- Features now implemented in OPAL-cycl
 - Horizontal and vertical FFA with scaling to arbitrary order
 - Vertical FFA with scaling to aribtrary order
 - Variable frequency RF cavities
 - Arbitrary order multipoles with maxwellian fringe fields
 - Foil model (scattering and energy loss)
- Features coming soon
 - Python binary API for direct interface to OPAL from python
 - Time dependent/pulsed multipoles

Horizontal FFA

Inject from inside – using D magnet

- Use bump magnet to distort closed orbits
 - Movement of circulating proton beam over 100 mm
 - 0.1 m long bump magnets
 - Max field ~ 0.12 T
- Tune distortion is constrained to maintain sufficient DA

Injection process

- Inject H⁻
- Sweep H⁻ beam up
- Sweep H⁺ close orbit horizontally
- Paint full phase space

- Collapse bump
- Beam moves clear of foil

Vertical FFA

Ι1

Tracking simulation - vFFA

vFFA has strongly coupled optics, from Maxwell's equations

- Skew quadrupole focusing in magnet body
- Solenoid focusing in magnet fringe field
- Vertical kick in fringe field if beam is not perfectly central

Injection simulation - vFFA

- Use bump magnet to distort closed orbits
 - Now we need both horizontal and vertical bumps
- Challenging to achieve sufficient DA with good orbit separation
 - Have not tried using F magnet to separate orbits!

Conclusions

- OPAL has been extended to model FFAs
- OPAL has been extended to model fully 4D injection systems
 - Including e.g. pulsed magnets and RF
 - Features coming to user space soon!
- Studies of injection in a small test ring
 - HFFA
 - Good closed orbit separation
 - Sufficient DA
 - VFFA
 - Move proton orbit arbitrarily in x-y plane
 - Still looking for good DA with sufficient orbit separation
 - Idea to use foil in F magnet to get orbit separation (WIP)