Electron Beam irradiation beamline at Jefferson Lab for 1,4-dioxane and PFAS remediation in Wastewater

Xi Li, H. Baumgart, C. Bott, G. Ciovati, S. Gregory, M. McCaughan, F. Hannon, R. Pearce, M. Poelker, H. Vennekate, and S. Wang.

TUXD2

Presenter: Xi Li

Tuesday, August 9, 2022

Outline

- Motivation
- Advantages and status of e-beam irradiation at wastewater plants
- E-beam irradiation beamline at Jefferson Lab: design and commissioning
- 1,4-dioxane and preliminary PFAS treatment results
- Challenges and possible solutions for wider adoption of e-beam technology
- Conclusions

Motivation

- NAPAC
- Evaluate e-beam irradiation as a possible method to reduce or eliminate emerging contaminants in wastewater

1,4-dioxane

- Widespread
- A likely human carcinogen

Perfluoroalkyl and polyfluoroalkyl substances (PFAS)

A family of >5,000 synthetic substances

Pollutant	Current method	Limitations
1,4-dioxane	Ozone	 Low effective degradation for lower concentration ↑ Bromate, toxic byproduct
PFAS	Granular Activated Carbon (GAC)	 Non-destructive (separation) Low degradation efficiency for low molecular weight PFAS

• These chemicals may soon be subjected to EPA regulation

Ionizing radiation

$$e^{-}$$
 + H₂0 $\rightarrow \cdot$ OH(2.7) + $e^{-}_{aq}(2.5)$ + \cdot H(0.6) ..
1 -10 MeV) Oxidant Reducers

- Production of both oxidizing and reducing species
- No need for chemical additives
- Proven effective in decomposing a wide range of organic chemicals with a relatively low dose (< ~2 kGy). Many such pioneering studies were done in the US in the 1980-90s

Environmental Applications of Ionizing Radiation

William J. Cooper (Editor), Randy D. Curry (Editor), Kevin E. O'Shea (Editor)ISBN: 978-0-471-17086-0October 1998752 Pages

Examples of e-beam irradiation at wastewater plants

NAP

- Daegu dyeing treatment plant, South Korea, 10,000 m³/day, 2006
- Guanhua knitting factory treatment plant, Guangdong, China, 30,000 m³/day, 2020 •
- Medical waste treatment plant, Shiyan, China, 400 m³/day, 2021

https://www.ans.org/news/article-3073/chinas-electron-beam-technologyfor-treating-industrial-wastewater/ S. Wang, et al, Radiation Physics and Chemistry 196 (2022) 110136

Commercial accelerators: Transformer/DC type. Relatively compact, high efficiency but low beam power

South Korea

https://www.eb-tech.com/en/

Dynamitron: 0.5 – 5 MeV, 30 – 200 kW

China

- Hampton Roads Sanitation District (HRSD)
 - -Regional wastewater treatment utility company serving Southeast Virginia
 - -Forward thinking, engaged in R&D on novel treatment techniques
 - Operates an R&D facility processing wastewater to drinking water standards, aiming at recharging the local aquifer (<u>https://www.hrsd.com/swift</u>)
 - -Provided all the water samples and directed the analysis before and after irradiation

- Jefferson Lab:
 - Designed and built an irradiation beamline at a 10 MeV SRF accelerator (UITF) on JLab's campus
 - Became one of a handful of facilities where e-beam irradiation studies can be done in the US

The Upgraded Injector Test Facility (UITF) at Jlab

- Multi-purpose SRF continuous-wave (CW) accelerator
- Up to 10 MeV, 100 nA (limited by radiation shielding)

E-beam irradiation beamline

Xi Li *et al.*, Nuclear Inst. and Methods in Physics Research, A **1039** (2022) 167093

Beam parameter design

- Sample diameter = beam transverse diameter \cong 50 mm
- Sample volume \cong 60 mL -> beam energy = 8 MeV, a compromise between dose uniformity and reliable beam energy

Window thickness: 0.127 mm Ti: titanium

Parameters at target location	Value	$\begin{array}{c c} & 9 \\ \hline & \sigma_x \\ \hline & 8 \\ \hline & \sigma_x \\ \hline & \sigma_x \\ \hline & 2 - Quadrupoles \\ \hline & 2 - Solenoid \\ \hline & 2 - Solenoid \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupoles \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupoles \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupole \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupole \\ \hline & 3 - Solenoid \\ \hline & 1 - SRF Cryomodule \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupole \\ \hline & 3 - Solenoid \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupole \\ \hline & 3 - Solenoid \\ \hline & 1 - SRF Cryomodule \\ \hline & 1 - SRF Cryomodule \\ \hline & 2 - Quadrupole \\ \hline & 3 - Solenoid \\ \hline & 5 - Solenoid \\ \hline$
Beam transverse size, σ	\cong 15 mm (90% electrons in the diameter of 50 mm)	
Energy	8 MeV	
Divergence	Simulation range < 10 mrad	
Relative energy spread (σ _E /E)	Simulation range < 10 ⁻²	
		F 0 5 10 15 20 25 Beamline position (m) (a)

NAPAC

Beam transport along the beamline

• Use a solenoid with 0.28 T axial field to defocus the beam

Beamline commissioning

• Beam size (1σ) is about 15 mm at the dummy target.

NAPAC

Jefferson Lab

Dose distribution methodology

RS

- Use experiments to calibrate the Monte-Carlo simulation
- Use simulation to calculate the dose distribution in the entire sample

Beam size, 1 σ	15.3 mm
Beam center	(-3.0 <i>,</i> 1.7) mm
Total energy	8 MeV
Beam current	108 nA

Sample irradiation – dose distribution methodology

• 4 dosimeter rods mounted at the front of the target cell to monitor the dose distribution during sample irradiation

1,4-dioxane and PFAS treatment results

- More than 95% of 1,4-dioxane was removed for a dose < 2 kGy
 - Initial concentration 100 UPW: 8.1 μ g/L 2.5 UPW: 78.5 μg/L 80 ,4-dioxane C/C_0 (%) SE: 9.0 μg/L 2.0 SE: 85.0 μg/L PFOS GAC: 8.9 μ g/L PFOA 60 1.5 c/co PFBS GAC: 15.7 μg/L Ŧ PFHxA *C*, concentration 1.0 PFHxS 40 C_0 , initial concentration ■ PFHpA PFPeA PFBA 20 0.0 Spiked SE- 2 kGy Spiked SE- 10 kGy 0 2 3 0

Dose (kGy) UPW: ultra-pure water, SE: secondary effluent GAC: granular activated carbon filtered SE Analysis method: solid phase extraction

Spiked samples initial concentration PFOS: ~ 500 ng/L, PFOA: 1 μ g/L, PFHxA: ~ 500 ng/L

NAPA

HRSD

15

 Conversion of long-chain PFAS (PFOS) to short-chain type (PFBA). Samples analyzed by Eurofins.

Challenges towards wider adoption of e-beam irradiation in wastewater treatment

- Beam power
 Mass flow * Dose. Accelerators with higher beam power and similar high efficiency than currently available need to be developed to achieve a competitive treatment cost in large-scale treatment plants. They should also be "compact" and have a high reliability.
- Only two vendors are producing the accelerators currently being used for wastewater treatment (none in the US)
- Education: e-beam irradiation is not a method typically mentioned in wastewater treatment engineering textbooks
- Conservative, well-established industry in developed countries, more open to innovation in developing countries (increasing fraction of wastewater being treated there)
- Funding to develop and improve accelerator technology for this application is fairly limited

SRF/NC-RF compact accelerator designs for wastewater treatment

Conclusions

- A collaboration between JLab and HRSD was initiated to study the effectiveness of e-beam irradiation towards treating emerging harmful contaminants in wastewater
- An e-beam irradiation beamline was successfully designed and commissioned at a 10 MeV SRF accelerator on JLab's campus
- Successfully demonstrated >95% removal of 1,4-dioxane with < 2 kGy
- More complex chemistry with PFAS irradiation, more studies are needed
- Several challenges are preventing a wider use of e-beam irradiation as part of the treatment-chain in wastewater plants
- Advances in accelerator technology may hold the solution to some of those challenges.

Acknowledgements

UITF vacuum install and training: M. McCaughan (also operator), M. Poelker (also

UITF operators: M. Bruker, D. Turner, Y. Wang, R. Bodenstein

FLUKA simulation: K. Welch, FLUKA cern experts and the user forum

BCM and Fcup: J. Musson, C. Seaton, P. Adderley, K. Cole

GPT simulation: F. Hannon, A. Hofler, Y. Wang, R. Kazimi

Electric gun: G. Palacios-Serrano, C. Hernandez-Garcia

Dosimeter rod and reader: D. Hamlete, K. Welch

Funding: Jefferson Lab LDRD project.

Raster: B. Gunning, W. Lu

Mechanical: S. Gregory

View screen: M. Stutzman

HRSD: R. Pearce, C. Bott

SRF cavity: H. Wang

Solenoid field maps: J. Grames

Peppo solenoid: N. Falls, M. Beck

operator)

•

•

٠

٠

٠

•

.

•

•

٠

•

Xi Li, H. Baumgart, C. Bott, G. Ciovati, S. Gregory, M. McCaughan, F. Hannon, R. Pearce, M. Poelker, H. Vennekate, and S. Wang.

Email: xli009@odu.edu, gciovati@jlab.org

Thank you and Questions?

