Production Pathways for Medically Interesting Isotopes

Loida Rosado Del Rio, University of Puerto Rico Dr. Andrew Hutton, Thomas Jefferson National Accelerator Facility Lila Dabill, Coe College

ED

Introduction

- The DOE has published a list of future radioisotopes of medical interest
- All of which have limited production
- The goal is an overview of all possible production pathways by irradiation and cascade production

Isotope	Usage
actinium-225 (accelerator routes only) and bismuth-	Treatment of infectious processes as well as cancers
213	using alpha particles.
astatine-211	Treatment of infectious processes as well as cancers
	using alpha particles.
bromine-76, 77	Bromine-76 is a PET imaging isotope, while bromine-
	77 offers the advantage of therapeutic low-energy
	Auger and Coster-Kronig electrons. Potential uses
	include imaging and therapy of infectious processes as
	well as cancers.
cerium-134	PET imaging analogue for alpha-emitting isotopes
cobalt-55	Longer half-life PET imaging agent often used to study
	slower biological processes. (e.g., effects of stroke and
	Traumatic Brain Injury (TBI))
Copper-67	Theragnostic agent for treatment of cancer and
	infectious disease.
iridium-192	High dose-rate brachytherapy for treatment of tumors.
iron-52	Radiotracer for early stage medical and biological
	processes.
lead-212/bismuth-212 (generator)	Treatment of infectious processes as well as cancers
	using alpha particles.
manganese-52	PET imaging agent.
rhenium-186	Theranostic isotope for diagnostic imaging and
	treatment.
scandium-43,44,47/titanium-43,44,47	Potential uses include imaging and therapy of
	infectious processes as well as cancers. Sc-43 and Sc-
	44 are PET imaging isotopes, while Sc-47 is a
	therapeutic β emitter.
selenium-72/arsenic-72 (generator)	PET imaging agent.
Strontium-89	Bone pain palliation.
tellurium-119m/antimony-119 (generator)	Treatment of infectious processes as well as cancers
	using low-energy Auger and Coster-Kronig electrons.
tin-117m	Therapeutic isotope for various joint diseases using
	low-energy Auger and conversion electrons.
uranium-230/thorium-226 (generator)	Treatment of infectious processes as well as cancers
	using alpha particles.
vanadium-48	PET imaging agent.
tungsten-188	beta emitter for treatment of infectious processes and
	cancer.
yttrium-86	PET imaging agent.
yttrium-88	substitute for Y-90 as a therapeutic isotope.

Department of Energy Office of Science Isotope R&D and Production. (2021). Advancing Novel Medical Isotopes for Clinical Trials FOA. DE-FOA-0002532

- Search for New Isotope Production Pathways
 - Irradiation production

Cascade production
Image: A state of the sta

TRIUMF

Irradiation production section

method, start and end isotopes

Irradiation proc	duction section
Input: particle, target method, start a	t material, production nd end isotopes
Gets cross sections energy entered from T lives for each daughte	L corresponding to the ENDL ¹ library and half- er produced from NDW ²

- 1. A.J. Koning, D. Rochman, J. Sublet. (2019) https://tendl.web.psi.ch/tendl_2019/tendl2019.html
- 2. Brookhaven National Laboratory (2019). https://www.nndc.bnl.gov/wallet/wallet11.pdf

- 1. A.J. Koning, D. Rochman, J. Sublet. (2019) https://tendl.web.psi.ch/tendl 2019/tendl2019.html
- 2. Brookhaven National Laboratory (2019). https://www.nndc.bnl.gov/wallet/wallet11.pdf

- 1. A.J. Koning, D. Rochman, J. Sublet. (2019) https://tendl.web.psi.ch/tendl 2019/tendl2019.html
- 2. Brookhaven National Laboratory (2019). https://www.nndc.bnl.gov/wallet/wallet11.pdf

- 1. A.J. Koning, D. Rochman, J. Sublet. (2019) https://tendl.web.psi.ch/tendl 2019/tendl2019.html
- 2. Brookhaven National Laboratory (2019). https://www.nndc.bnl.gov/wallet/wallet11.pdf

https://www.nndc.bnl.gov/wallet/wallet11.pdf

https://www.nndc.bnl.gov/wallet/wallet11.pdf

https://www.nndc.bnl.gov/wallet/wallet11.pdf

Input parameters – Irradiation and decay production

- Gammas: produced by bremsstrahlung radiation from 40 MeV electrons
 - Gamma energy: 20 MeV
 - Half-life for irradiation production: 1 20 days
 - Half-life for cascade production: 0 1000 days
- Low energy protons: produced by hospital cyclotrons at 15-25 MeV
 - Proton energy: 20 MeV
 - Half-life for irradiation production: 1 hour 20 days
 - Half-life for cascade production: 0 1000 days
- Reactions were designated "not viable" for target isotopes with low proportion or difficult prior separation, low cross-sections, or medically dangerous co-produced radioisotopes
- Examples with large cross sections and small co-production of undesirable isotopes were selected

Results for 20 MeV Gamma Pathway for ⁴⁷Sc

		Irradiation Production										
	Target	% of Isotope in Target	Reaction	Cross section (barns)	Daughter	Half-life (days)	Decay mode	Energy (MeV)	Reaction probability (barns)			
	⁵¹ V	99.8%	⁵¹ V (γ,α) ⁴⁷ Sc	0.6	⁴⁷ Sc	3.3	β-	0.6	0.6			
	⁴⁸ Ti	73.7%	⁴⁸ Ti (γ,p) ⁴⁷ Sc	13.3	⁴⁷ Sc	3.3	β-	0.6	9.8			
Co- Produced	⁴⁹ Ti	5.4%	⁴⁹ Ti (γ,p) ⁴⁸ Sc	4.6	⁴⁸ Sc	1.8	β-	4.0	0.2			

 Titanium reaction co-produces ⁴⁸Sc, which could be significantly reduced by using an isotopically purified target

Results for 20 MeV Gamma Pathway for ⁶⁷Cu

		Irradiation Production									
	Target	% of Isotope in Target	Reaction	Cross section (barns)	Daughter	Half-life (days)	Decay mode	Energy (MeV)	Reaction probability (barns)		
	⁶⁸ Zn	18.4%	⁶⁸ Zn (γ,p) ⁶⁷ Cu	2.0	⁶⁷ Cu	2.6	β-	0.6	0.4		
	⁷¹ Ga	39.9%	⁷¹ Ga (γ,α) ⁶⁷ Cu	0.7	⁶⁷ Cu	2.6	β-	0.6	0.3		
Co- Produced	⁶⁹ Ga	60.1%	⁶⁹ Ga (γ,2n) ⁶⁷ Ga	20.1	⁶⁷ Ga	3.3	E	1.0	12.1		

 Gallium reaction co-produces ⁶⁷Ga, which could be significantly reduced by using an isotopically purified target

Results for 20 MeV Proton Pathway for ⁵²Mn

		Irradiation Production									
	% of TargetCross sectionHalf-life DaughterDecay Energy (days)Reactor Energy (MeV)In TargetReaction(barns)DaughterHalf-life (days)Decay modeEnergy (MeV)Reaction (MeV)										
	⁵² Cr	83.8%	⁵² Cr (p,n) ⁵² Mn	68.8	⁵² Mn	5.6	EC	3.7	57.7		
	⁵³ Cr	9.5%	⁵³ Cr (p,2n) ⁵² Mn	305.0	⁵² Mn	5.6	EC	3.7	29.0		
Co-	⁵² Cr		None								
Produced	⁵³ Cr		None								

- No other isotopes are co-produced when irradiating naturally occurring chromium
- Total reaction probability of 86.7 barn

Results for 20 MeV Proton Pathway for ⁵⁵Co

		Irradiation Production								
	Target	% of Isotope in Target	Reaction	Cross section (barns)	Daughter	Half-life (days)	Decay mode	Energy (MeV)	Reaction probability (barns)	
	⁵⁶ Fe	91.8%	⁵⁶ Fe (p,2n) ⁵⁵ Co	60.5	55Co	0.7	EC	2.4	55.5	
	⁵⁴ Fe	5.8%	⁵⁴ Fe (p,γ) ⁵⁵ Co	0.5	⁵⁵ Co	0.7	EC	2.4	0.03	
CO-	⁵⁶ Fe	91.6%	⁵⁶ Fe (p,n+α) ⁵² Mn	0.5	⁵² Mn	5.6	EC	3.7	0.5	
Produced	⁵⁷ Fe	2.1%	⁵⁷ Fe (p,2p) ⁵⁶ Mn	4.8	⁵⁶ Mn	0.1	β-	3.7	0.1	

 Reaction probabilities are small and chemical separation of the desired radioisotope and the unwanted co-produced radioisotopes would be possible

Results for 20 MeV Proton Pathway for ⁴⁸V

	Irradiation Production									
	Target	% of Isotope in Target	Reaction	Cross section (barns)	Daughter	Half-life (days)	Decay mode	Energy (MeV)	Reaction probability (barns)	
	⁴⁸ Ti	73.7%	⁴⁸ Ti (p,n) ⁴⁸ V	74.5	⁴⁸ V	16.0	EC	3.0	54.9	
	⁴⁹ Ti	5.4%	⁴⁹ Ti (p,2n) ⁴⁸ V	431.7	⁴⁸ V	16.0	EC	3.0	23.3	
	⁴⁶ Ti	8.3%	⁴⁶ Τi (p,α) ⁴³ Sc	12.9	⁴³ Sc	0.2	EC	1.2	1.1	
	⁴⁶ Ti	8.3%	⁴⁶ Ti (p,d) ⁴⁵ Ti	360.7	⁴⁵ Ti	0.1	EC	1.0	30.0	
	⁴⁷ Ti	7.4%	⁴⁷ Ti (p,n+α) ⁴³ Sc	16.4	⁴³ Sc	0.2	EC	1.2	1.2	
Co-	⁴⁷ Ti	7.4%	⁴⁷ Ti (p,α) ⁴⁴ Sc	40.5	⁴⁴ Sc	0.2	EC	2.6	3.0	
Produced	⁴⁸ Ti	73.7%	⁴⁸ Ti (p,n+α) ⁴⁴ Sc	0.9	⁴⁴ Sc	0.2	EC	2.6	0.7	
	⁴⁸ Ti	73.7%	⁴⁸ Ti (p,2p) ⁴⁷ Sc	3.8	⁴⁷ Sc	3.3	β-	0.6	2.8	
	⁴⁹ Ti	5.4%	⁴⁹ Ti (p,n+2p) ⁴⁷ Sc	1.5	⁴⁸ Sc	1.8	β-	4.0	0.1	
	⁵⁰ Ti	5.2%	⁵⁰ Ti (p,α) ⁴⁷ Sc	16.5	⁴⁷ Sc	3.3	β-	0.6	0.9	

• All co-production reactions have small reaction probabilities, except for ⁴⁵Ti

• The lifetime of ⁴⁵Ti is 3 hours, so it will have decayed to negligeable values after a day

Results for cascade reactions:

- The decay reactions returned 21 proton reactions and 7 gamma reactions which produced interesting isotopes
- Most contained a large number of co-produced isotopes, and/or produced isotopes that could not be chemically separated from the original target or the co-produced isotopes
- No acceptable decay reaction pathways were found for isotopes listed in the DOE IP list of medically interesting isotopes
- Irradiation production pathways for medically interesting isotopes not on the DOE IP list were also found. One example is the production of ¹⁸F from ¹⁸O by proton irradiation, a pathway which is already widely used in hospital cyclotrons

Conclusions:

- SNIPP has already been shown to be efficient in finding new possibilities for producing radioisotopes
- It is now capable of searching for pathways to produce radioisotopes with desired properties, e.g., alpha emitters with a half-life greater than 3 days.
- This provides an opportunity to look at a wide set of radioisotopes, including those of industrial interest
- However, identifying a pathway with SNIPP is a necessary, but not sufficient requirement for exploitation

Gracias

LR was supported by the U.S. National Science Foundation Research Experience for Undergraduates at Old Dominion University Grant No. 195014 LR also received travel support from AccApp'2021 AH supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177