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Electron Energy Loss Spectroscopy

e Modern condensed matter relies on
Inelastic scattering techniques

Intensity

 Recent advances have shown electron
energy loss spectroscopy (EELS) to be
promising to investigate dispersion

relations b
» For high-resolution EELS, we require Lo -
small energy resolution (meV) which AR ]
requires a monochromator -] NS
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Current Monochromators

* Jypically, energy spread mainly comes
from thermal spread from the cathode

(0.1-0.5 eV)

* Currently, we trade current for fine energy

resolution

 |f the initial beam is pulsed, we can trade
off bunch length for energy resolution
(Duncan et al., Physical Review Applied,

2020)
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Our Scheme
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* Pulsed photoemission yields an initial electron bunch

(02, 0y)

 Liouville Theorem | Phase space area must be conserved

 Can provide meV energy resolution in exchange for temporal broadening
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Theory

* [ransport matrix for the longitudinal L is the drift length,
dynamics (7 A -> (7 Av) for the o is the normalized accelerating voltage of
Sgheme ( 0 }/()) ( ’ }’) the first cavity

k, is the wavenumber for the first cavity

: . . _ 302 ..
« We set the second cavity to nullify the linear "1 = 1/r°/" where, [ are the relativistic
correlation gamma and beta factors

* Optimal Compensation:
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Mildly overcompensated simulation

Limits

* Tradeoff implies we want large drift length
to maximize compensation

* A large bunch entering the second cavity
will sample too much RF phase

* Optimal compensation is limited by the 3rd-
order effects at the second cavity
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 Numerical study of the 3D dynamics using
General Particle Tracer

 Cavitiesplacedatz=0.2m, 0.7 m
e Two solenoidsatz= 0.05m, 0.32 m

* Obtained a compensation of 17.6 - slightly
off the analytical optimum of 20
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Phase Space at z = 0.55m
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Optimal Compensation Beam Evolution
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Exploring Two Different Frequency Cavities

w

e Cavity 2 must have a lower frequency then
the first cavity for the scheme to get better
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* Highly dependent on the initial bunch length

and
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Cempensation

o Stronger synchronization requirement to
sample adequate RF phase

2nd Cavity Frequency (GHz)
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» Can theoretically achieve very large
compensations at the expense of cavity size
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J itter EffeCtS 500 simulations with randomly fluctuating phases

and amplitudes for both cavities

200
e The scheme is relatively tolerant to 150 |
fluctuations in amplitude (0.1%) and phase
(< 0.1 deg)

Frequency
S
-

e The changes in amplitude and phase do push
the scheme off optimum 50

o A feedback control system can be used to

keep the cavities within reasonable values 5 10 15
Compensation Factor
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Space Charge

20

® |asers tuned for single electron pulses have 5\
minimal space charge effects

Compensation
S

® Space charge acts to shift the whole scheme \
off optimum by increasing the initial bunch
length T
® |t serves to essentially add a linear chirp 0 . - - -
0 10 20 30 40 50

before the first cavity, thus the second cavity

, Electrons
must be tuned appropriately

NA PAC;:?I



Conclusion

* The promising nature of the
scheme in simulation begets
practical implementation
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* |ooking forward to implement
this scheme at UCLA on the
KLUES beam line
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