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Talk Outline

« Data Management
— Dynamic Diamond Anvil Cell (dDAC)
— Shock compression

« High Performance Computing
- Single Particle Imaging

« Control
— Guided user experiments

LANL in spring
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Data and Computational Workflow Challenges for
Experiments at Accelerators

Interdisciplinary effort
Real-time component

Connection to resources

Diversity of applications

Large data volumes and velocity, in some cases
Portability

Sustainability



Tools for Real-time Dynamic Diamond Anvil Cell
Experiment Data Analysis

Data Science Thrust Area within:
Novel in situ Probes of Mesoscale Materials Dynamics, 2019-2021
LDRD Directed Research Project, Pl: Dmitry Yarotski, Co-Pl: Blake Sturtevant

Christopher Andres Larissa ' .

B Q John Ye Jin Dmitry Blake
% Rttel? L Huston Lazarz Choi Yarotski  Sturtevant Sweeney
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dDAC Analytics Requirements

« Use at HPCAT at APS, PETRA-IIl at DESY and ultimately at the EuUXFEL
« Typically acquire 30-1000 images with 2kHz detector

 Could go to 4.5 MHz at EuXFEL

» Integrated tools, no time for using separate tools

* Help drive experimental design

In situ X-ray Diffraction allows for time-resolved
material phase and density determination in
novel DAC.
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Motivation/Background — Analyzing Experimental Data
Quickly Enables Collection of Better Quality Data
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Revised Analytics Workflow

Preparation
Research

Perform

Experiment

Revise
Experimental
Parameters

Change parameters and continue dDAC experiments at future beam time

XRD

images

Real-Time Analytics

Integrate XRD
(compression)

1D Spectra

Determine Crystal
Structure

Compute
Volume/Pressure
and Fit EOS

Visualize Phase
Transformations

Cando
more dDAC
runs?

~

No

Post-Hoc
Detailed

Analysis

* Rietveld
Refinement

e Texture
Analysis

* Modeling

Achieved
Objectives?
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Cinema:Snap Layout
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Parallel Coordinates Panel Data Connector Visualization Selector

Intensity VS Angle

Parallel Coordinate Plot
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Cinema:Snap and Automated Workflow Benefits

®

Data Generation

Analytics Pipeline

Light Source

>

ZeroMQ Pub/Sub

OMQ

A

Image Conv.
Subscriber

Data Server
(at user facility,
institution, or
on laptop)

Integration
Subscriber

Pressure Fit
Subscriber

Display and Interaction

Cinema
Database

React

N~

Cinema:Snap
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» Open source: https://github.com/cinemascience/cinema_snap

» Open source (future): https://github.com/lanl/analytics_pipeline




Dynamic Compression Experiment Data Management
and Real-time Data Analysis

Workflow and Visualization Staff for:

Real-time Adaptive Acceleration of Dynamic Experimental Science, 2016-2019
ASSIST Project

LDRD Directed Research Project, Pl: James Ahrens, Co-Pl. Cynthia Bolme

s

»

Dan Divya  Christopher Ayan Christine  Richard  Cynthia James David
Orban Banesh Biwer Biswas Sweeney Sandberg Bolme Ahrens Rogers
<

Not pictured: C. Tauxe, R. Saavedra “""* ©




Big Data Problem at Light Sources, Especially in
Dynamic Compression/HEDP Science
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Previous State of the art for data management - PPTX
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Repeat for each run, one slide per shot, up to several hundred shots
over an experiment (500+)

®



Cinema:Explorer x
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Cinema:Explorer
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Cinema:Explorer
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Cinema:Bandit multi-data viewer

€O fleusersiahiLANL o "B ¥ AO = € ) () fiesUsers/dnr/LANLidemos(cinemaicinema_bandiybandit i @ | Qs LA A =
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Cinema-Bandit for Database Visualization and Curation

Real time display of data populating with runs in real time
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= Example dataset from MEC-LCLS experiment on shocked high-pressure phases of
“9 titanium (C. Bolme PI)



Application of Tools to Beam Line Monitoring Data

Example from December 2018 LCLS Imaging Beamtime
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ASSIST team members
present: R. Sandberg, C.
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inema Released Open Source

‘1

SPREADSHEET EXAMPLES

Scientists often compile data about experiments

database.

You can view examples online, download/view i

examples.

APPLICATION EXPORT EXAMPLES

= = Common analysis and visualization applications

database that is ready to view.

You can view examples online, download/view i

examples.

IN-SITU EXPORT EXAMPLE

For in-situ analysis workflows, capabilites can bd

simulation during execution. One supported wa

b B BE B ] ; »

7% PR PR P support a repository of reproducible workflows t
i Bt BT IR B

ik B B B

Download examples of end-to-end workflows at

CINEMA CODE, SPECIFICATIONS, AND DOWNLOADS

CINEMA CODE

The main Cinema projec ins code for viewsrs and wrers, offcialspecifcations, example data sets, and submodules for allCinema

released code. Basic viewsrs can be expanded with cinema_components and the submodules provide working examples for users with speciaized analysis needs

CINEMA SPECIFICATIONS

The oficial Cinema specifcaons define a CSV-based databass specificason. Thess can be found in the following document: D

CINEMA VIEWER APPLICATIONS

These are the basic (currenty supportec) viewers. Examples can be soen on 1

2Ot based crossplatorm viewer that uses eiter Ul siders or ntuitve mouse movemenis fo

ted on Linu, MacOS, MacOSXcode

using a CSV fl to define the database. The paralel coordinates ot allows the usor 1o select and

g interaction with the entire Cinema database and parameer space. n addton to the paralil coordinates po

trpiot. Clone the gt 19po to start using Cinema Explorr.

moare - the browsar based Inforactive viewer allows the usar fo access tho image artfacts in @ (CSV:dofinad) Cinoma database via Ul siders irked to

Y. Ot can bo used with multple databases to comparo and

contrast, 0.9, iferent un parametars or the efect of diferent algorthms applied o the data. Cione the gt rapo to tartusing Cinema:Cormy

pac D complant components

CINEMA ALGORITHMS

i - 2 python based command fine tol; t includes associated modules that implement various algorithms (statisical algorthms, mage based aigorifms,

etc.) that can be run on Cinema databases.

EXAMPLE DATABASES

These are sample Cinema

et functionalty. Each Spec D CD includes the control fle data.csv. Images for sach

database are organized nto the necessary subdireciories under imagel”.

Sphere: this simple database has 1 theta and 20 phi values. Download

rom Github (t s also included in the cinema_explorer dowrioad):

Spec D Sedov Blast Wave: ivee example daiabases are avallable, cach with 7

theta, 7 phi values and 10

steps. Partof the cinema_compare dowioad:

SPEC D EXAT

LE DATABASES

Examples

Downloads

cinemascience.github.io

# CinemaScience

What is Cinema?
Getting Started
CinemaScience Specifications
CinemaScience Viewers

CinemaScience Algorithms, Libraries,
and Tools

Tutorial: Cinema Workflows
Tutorial: Cinema Viewers

Tutorial: Other Useful information

g
hnd

Docs » Welcome to CinemaScience’s documentation O

Welcome to CinemaScience’s documentation
CinemaScience is an ecosystem for large scale data analysis, exploration, and visualiz4

Contents:

« Whatis Cinema?
« Getting Started
o Interactive Tutorial
« CinemaScience Specifications
© Current Specification: Spec D
o Deprecated Specifications: A & C
« CinemaScience Viewers
o Cinema:View
o Cinema:Explorer
© Cinema:Scope
© Other Viewers
« CinemaScience Algorithms, Libraries, and Tools
o cinema_lib Library
o cinema_components Library
o cinema_movie Tool
« Tutorial: Cinema Workflows
o Custom Script
o Post-Processing via ParaView 5.9 Export Inspector
o Post-Processing via ParaView 5.7 Export Inspector
o Post-Processing via ParaView 5.6 Cinema Export Scene
o In Situ via ParaView Catalyst
o Post-Processing via Visit Cinema Export Wizard
o In Situ via Vislt LimSim
o In Situ via ALPINE Ascent
« Tutorial: Cinema Viewers
© Viewing Cinema Databases
o Cinema:View
o Cinema:Explorer
© Cinema:Scope
« Tutorial: Other Useful information
o Converting Spec A to Spec D databases
© ANote on Browser Security

Indices and tables

« Index
« Module Index
« Search Page

© Copyright 2018, Data Science at Scale Team, Los Alamos National Laboratory Revi
@0afabss.

Built with Sphinx using a theme provided by Read the Docs.

Documentation



High-Performance Single-Particle Imaging
Reconstruction on Pre-Exascale Computing Platforms

ExaFEL: Data Analytics at the Exascale for Free Electron Lasers, 2017 - present

ExaFEL Resource Orchestration Team:
Lawrence Berkeley National Laboratory
ESnet:
Chin Guok
Thomas Lehman
Alexander Sim

SLAC National Accelerator Laboratory
ExaFEL Pl: Amedeo Perazzo
Hsing-Yin Chang
Antoine Dujardin
Seema Mirchandaney

Ariana Peck _ This research was supported by
Elliott Slaughter NERSC: the Exascale Computing Project
M ) 9 N " Deborah Bard (17-SC-20-5C), a joint project of
onarin Uervirojnangkoorn Damian Hazen the U.S. Department of Energy’s
Chun Hong Yoon Ashwin Prabhu Selvarajan Office of Science and National
Lawrence Berkeley National Laboratory . Nuclear Security Administration,
SLAC National Accelerator Laboratory | R
Johannes Blaschke Mark Eoster responsible for delivering a
Jeffrev Donatelli a capable exascale ecosystem,
efirey Lonate Wilko Kroeger B .
Betrus H. Zwart including software, applications,
Los Al Nati | Laborat Amedeo Perazzo and hardware technology, to
os Alamos Natlonal Laboratory Frederic Poitevin support the nation’s exascale
— Pranay Kommera Murali Shankar computing imperative.
) Vinay Ramakrishnaiah 8/11/22 19

Cong Wang

hristine Sween




Single-Particle Imaging is Performed via High Repetition Rate
X-ray Free Electron Lasers (XFELSs)

Single-particles such
as ribosomes or
proteins are placed
in front of the x-ray
beam and diffraction
patterns are
collected on a
detector behind the
sample

e Ultrafast X-ray pulses are used like flashes from a high-speed strobe light, yielding
data that can produce stop-action movies of atoms and molecules.

® These experiments are performed at X-ray Free Electron Laser (XFEL) facilities like LCLS-II at
SLAC National Accelerator Laboratory.



Single-particle Imaging Data Requires Image Reconstruction

Image Collection

Particle Stream '

X-rays

&
B

Diffraction Pattern

3D Reconstruction

. . Orlentatlon Determination

X-ray Diffraction Images

< ¢am
3D Electron Density
of the Molecule

9

3D Intensity Map

8/11/22

21



ExaFEL.:
Data Analytics at the Exascale for Free Electron Lasers

Application Project within Exascale Computing Project (ECP)
Two Thrusts: Serial Femtosecond Crystallography and Single-Particle Imaging
Pl: Amedeo Perazzo, SLAC. Co-PI: Nicholas Sauter, LBNL

1 | . -
Data Acquisition (DAQ) : Local Systems at ) Network I Supercomputing Facility
1 Experiment Facility : :
: I I
) | I
| | I
| | I
I I
' \
DAQ |Data : DataI : Data Supercomputer
I I
: 1 I
I 1 I
| | I
1 ! I
1 | 1
I | 1
| I 1
I ' ! \
; N
‘@ e I et

Interfacility workflow icons from ExaFEL project workflow



ExaFEL Single-Particle Imaging Workflow Vision

* Produce detailed 3D protein structure and a movie of
the protein functioning at room temperature.

« Demonstrate this exascale capability at 5kHz rate of 20
minutes data collection, totalling 6 million
snapshots.

— On simulated realistic data and real data previously
collected.

Simulated diffraction pattern

Conformational heterogeneity

» (Stretch goal) Include additional complexity from closed open
conformational heterogeneity (obtained when
molecule is excited through an optical laser, or in
equilibrium experiments) in the analysis.

* Run multiple 3D electron density reconstruction
instances for each conformation on each dataset and
choose the best.




Challenging Characteristics of LCLS Data Regime

Example data rate for LCLS-Il (early Example LCLS-Il and LCLS-II-HE

science) (mature facility)
e 1 x4 Mpixel detector @ 5 kHz =40 e 2 planes x 8 Mpixel ePixUHR
GBIs @ 50 kHz = 1.6 TBIs
Peak Throughput (prior to data reduction) Processing Projections
—8-LCLS —— ATLASRun4
® Nanocrystallography @ SPI
10000 1000
£ /
O, 1000 100
§, 100 g 10
£ 1 -
£ 1
?
= Today  LCLS-l LCLS-l  LCLS-l LCLS-lI 8
(2020) (2022)  (2024) (2026) o 0.1
Day One I ePixUHR  Multi Q.
UHR -
. Today LCLS-11 (2022) LCLS-II (2024) LCLS-II (2026)
TXI EpixUHR Multi UHR




ExaFEL Puts Computational Load on Supercomputers

Goal: Ingest 5kHz data for ~20 minutes (typical run length), totalling 6M images

Scenario # Nodes Protein Resolution # Orient # Images # Conformations
Low-end 3,300 3IYF 14 Angstroms 20k 198k 30
High-end 10,000 2CEX 4 Angstroms 60k 12k 500

Do ton L 20/mins data collection [T 20 mins data processing
Acquisition

Real-time B T 00 ] ] e e .

single hit

classification \ \ \

SpiniFEL on
supercomputer

Peak load

8/11/22



GPU Acceleration Shortens SpiniFEL Run Time

Single Node Comparison of Acceleration of Spinifel Steps

B Loading @ Slicing W Orientation Matching [ Merging Phasing

Baseline:
Accelerated Orient.
Match. and NUFFT

Baseline Plus
Accelerated Phasing

Configuration

Baseline Plus
Accelerated Phasing
and Merging

0 1000 2000 3000

Time (s)

Parameters used:
° 1000 images/rank, 2000 orientations, 6 ranks/node, 7 CPUs/rank, 6 GPU/node on Summit
° Dataset: 2CEX, 128 x 128 pixels
. 10 generations (main loop iterations)

8/11/22
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Image Scalability Crucial for Meeting Real-time Constraint

SpiniFEL Weak Scaling Perlmutter, 10K Orientations, 3IYF

B Loading M Slicing B OM [ Merging Phasing

1 node, 6K images

2 nodes, 12K images

4 nodes, 24K images

8 nodes, 48K images
16 nodes, 96K images
32 nodes, 182K images

64 nodes, 384K images

0 100 200 300 400 500 600

Seconds

700

800

900

27



Al-based Classifier Accurately Classifies Images

Multiple particles in the x-ray
beam need to be excluded
from SpiniFEL reconstruction.

Achieves 95% accuracy, f1
score.




ExaFEL Automates Data Path and Workflow

Resource orchestration
streams and distributes data, SL
and reduces job startup time.

Software-defined network e
(SDN) allows selection of
uncongested ESnet paths.

programmatically setup
and torn-down as needed

Results in 1.5-2x increase in
bandwidth throughput for
the orchestrated dedicated
path versus the path set up
using normal routing
protocols.

ESnet NSI STPs
1. um:ogf.network:es.net:2013::sacr-cr56:2_1_c19_1:+?vlan=2205
2. um:ogf:network:es.net:2013::sacr-cr55:1_1_c9_1:+?vlan=2205
3. um:ogf.network:es.net:2013::sunn-cr55:1_1_c19_1:+2vlan=2205
4. um:ogf:network:es.net:2013::sunn-cr55:2_1_c9_1:+?vlan=2205

Now automating resource
coordination, data flow, and
analytics pipeline.

WV ExaFEL Data Path Measurement Locations

Last Updated Nov 5, 2020

Image courtesy Chin Guok
(ESnet, Lawrence Berkeley



Machine Learning for Control

ExalLearn Control Pillar
ExalLearn Co-Design Center for Exascale Machine Learning Technologies, 9/18 —

Project within Exascale Computing Project, ExaLearn PI: Frank Alexander, BNL

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including

software, applications, and hardware technology, to support the nation’s exascale computing imperative.

y Vina Malachi o
Asher - k\_’ e . Shinjae Christine Frank
Mancinelli, 2RI chram,  Suetterlein, Sweene Alexander,
iah, LANL  PNNL Yoo, BNL v
¥ NL izl PNNL LANL PNNL

Not pictured: S. Ghosh, PNNL, Y. Huang, PNNL, A. Kagawa, BNL, ] Mohd-Yusof, LANL, D. Vrabie, PNNL, P. Welch, LANL v




How to Solve Control Problems?

* Controllers

- Good if control algorithm is simple/straightforward and
experts are available, otherwise could be intractable

* Optimization

Unsupervised Supervised
- Can utilize HPC and try many solutions, works well for Learning Learning
problems for which there is a response surface Clustering .
- Doesn’t work well for more complicated problems Machine
» Supervised Learning Learnlng

- Good for problems that have a fixed and labeled data
set. Like having a supervisor watch and tell which

action agent should have taken. Provides an exact
answer. Reinforcement

. ) Learning
* Reinforcement Learning

- Problems where agent must learn by interaction with
environment, self-teaching, no need for expert control
engineer or labelled data. Image courtesy Vishakha Jha

_ . - https://www.techleer.com/articles/203-machine-learning-algorithm-
Used when can formulate problem in terms of Finite backbone-of-emerqing-technolodies/

N . . .
¥  Markov Decision Process (described later) 811722 3t




Light Source Experiment Control Use Case:
Block Copolymer Self-assembly

What is a Block Copolymer (BCP)? How is self-assembly of block copolymers
COPOLYMER EXAMPLES directed?
Monomer-1 = »  Monomer-2 =
Random copolymer Graft copolymer
= 3= 3 St S D= Dbl 3= [ =3 B B 3 3 D
Alternating copolymer i
= =le =0 e e e e ':.
<’mwymr \’
bl o o o o o g g g ot e N o
\
gg@%év;/_l;vevrv;ﬁ:%%ismences. com/news/technical-briefs/2011/glossary-of- Youngwoo Choo, et
a) Block copolymer is in comﬁf‘ete disorder.
Why do we care about BCPs? b) Laser “orders” BCP into horizontal tubes.
Combining protein and synthetic polymers can create ¢) High-temp annealing helps achieve desired
functional biomaterials useful for catalysis, morphology while maintaining previous order.

sensors, nanotechnology and renewable energy.

) This process could take hundreds of experimental trials to get right!!



Challenges for Block Copolymer Experiments

» BCP experiments are performed at DOE
light source user facilities.

« Temperature is adjusted to direct the
formation of the block copolymers to a
target morphology.

!

-4!'1\‘&-

raw data

» GISAXS technique is used to detect BCP
morphology during directed self-annealing
process

+ Light source beam shining on sample at . .:15.’.:‘:".ng
small grazing incidence angle produces a 2%,
diffraction pattern

horizontal
aligned

vertical
aligned

» The multi-dimensional energy landscape
underlying directed block copolymer self- g
assembly requires engineering a polyaeain m)
convoluted pathway in order to obtain a

§ target m orph ol 0gy. Image from Nanoscale, 2018, 10, 416. Choo, Majewski,

Fukuto, Osuji and Yager.



Reinforcement Learning for BCP Self-Annealing

State and

of )

reward

Action

» Agent
§ 8 )

-

Structure
vector
(state)

\

Environment

KN\ CR
Image 5:’::‘?)?-‘ .
YA Simulator
structure e
2D/3D

Structural
Image

global

temperature
(parameter)

~

A

/

« Mapping to Finite Markov Decision Process (MDP):
« Agent — scientist controlling temperature of BCP experiment

®

Environment — BCP simulation
Actions — increase temperature, decrease temperature

Reward — numerical value comparing morphology to target morphology
State — structure vector (characterizes morphology of BCP)

Reinforcement Learning (RL) system:
» Simulate BCP self-assembly (via PDE or MD
sim) and produce a real-space image.

» Create training data (vector) based on
morphology of BCP, uses conversion to
fourier space

« Train RL system with new data point

* Query RL policy developed so far on best
parameters to try next.

» Repeat until reach target morphology.

Long-term vision would be to use the learned policy at an experiment and
also to ultimately transfer experimental data into the RL system.




BCP Reinforcement Learning Challenges and Results

Challenges: RL generated Target Structure Vector
. Training data 2D CH image 2D CH image at emsodclo iEiP 99
100 100 200 — RL
» Structure vector to capture
characteristics 50 50 100
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- 0 0
A 0 100 0 100 200
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results in BCP morphology (b).

0.50
3D Block Co-polymer Reinforcement Learning Application —660
initial structure @ end structure @ target structure 0 2 5
Episode 76 Step 0 Episode 76 Step 99 agent was trained to achieve * —— RL _ 680
0 50 100 —-0.05 0.00 0.05

Time Step Episode

(<
‘Q 8/11/22



Questions?

—— e el Y VR

bl 1 s




Backup Slides



Extreme-scale Machine Learning for Inverse Problems

* Long-term goal: develop and deploy ML-driven solutions of large-scale inverse problems that are directly

relevant to DOE-related science and technology

* Given a set of observations, inverse problems seek to determine the parameters that produced those

observations.

» Inverse problems arise in numerous DOE-related scientific application domains, e.g.,
- Fusion physics: given plasma equilibrium profiles in tokamaks/stellarators; determine device diagnostics.

- Microscopy: various kinds of microscopy—electron, scanning tunneling, transmission electron, and others; given a
microscopy image, determine the material properties that produced the observed image.

- X-ray crystallography: determine structure of target from diffraction patterns produced by it upon bombardment by incident

X-ray beam.

- Additive manufacturing: determining thermal parameters from target solidification microstructures in powder-bed metal

additive manufacturing.

« Short-term goal: Develop extreme-scale ML framework to solve the inverse problem of material structure

determination from neutron scattering experiments.

Team Members: Cristina Garcia-Cardona (LANL), Ramakrishnan Kannan

(ORNL), Travis Johnston (ORNL), Thomas Proffen (ORNL), Daniel Olds (BNL),
Katherine Page (ORNL/UTK). Team Lead: Sudip K. Seal (ORNL)

* Diffraction

* Scattering -
e Crystallography .

Material
Structure
Description

DAQ Machine

Learning

ExalLearn Approach

Learning to Predict Material Structure from Neutron Scattering Data, Workshop on Big Data, Tools and Methods (BTSD), IEEE Big

<

Data 2019, Los Angeles, Dec 9-12,,2019.

Structure Prediction from Neutron Scattering Profiles: A Data Sciences Approach /EEE Big Data 2020, Dec 10-13, 2020.



ExaBooster -- FermiLab (FNAL) Booster

Problem definition:
Reduce beam losses in the FNAL Booster by developing a Machine Learning (ML)
model that provides optimal set of actions for accelerator controls

FNAL Accelerator Complex:

MiniBoone  NuMI
(8 GeV) (120 GeV)

Main Injector
(150 GeV)

Recycler
\p‘ (8 GeV)

B0
p abort CDF detector

P1 line

Tevatron
(1TeV)

p C0 o

\, E0 1-—_* >
p
DO detector
DO

Courtesy: Christian Herwig
Data is available at zenoto

) Original work developed by PNNL, FNAL, University of California San Diego, Columbia
University



ExaBooster: The Need for Improving Regulation

Bending Observed 8l/I for min and max currents: ~10-3 each
Magnet
Current ® Spread in B-field degrades beam

quality and contributes to losses

® Focusing on min for now:
B_VIMIN = Setting to achieve
B:VIMIN = Prescribed remedy

JX
' from  PID regulator circuit
‘\///' B:IMINER = Error discrepancy
\/

Policy model is focused on
controlling the regulator to reduce
) Time the error

v



Proof of Concept Workflow for ExaBooster

Offlin

Historical Digital Reinforcement ;czls;;;
o Data Twin Learning (baseline)

Transfer Learning

AN \
FPGA or Reinforcement Cé;_.l,'obl":zted
Online GPU Learning Vod e};

® Digital twin provides accurate predictions of future time for key variables to be used by
the reinforcement learning framework
® Historical temporal information from key variables was available based on subject

matter expert input
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Reinforcement Learning Framework for ExaBooster

Starting with an initial accelerator state, can we train a RL policy to improve
beam quality through the magnet current ?

Train policy network every M
memories, where memory = {state,

Initial action, reward, next state}
accelerator state Action

condition
Control the magnet
current
N %
Calculate the
improvement in the

. Optimized Policy for
beam quality Reward Environment

Magnet Current

Run Digital Twin (NN surrogate
model) to predict the state
change from new action 8/11/22 42



ExaBooster Performance Results

The optimization was formulated as an episodic problem:

® An episode is composed of 100 sequential steps
® After each episode the environment was reset to the same initial state
® A batch size of 32 experiences were randomly sampled to train the active policy model
® A e-greedy method was used to control the level of exploration/exploitation
- B Avgtime (s) ™ Max time (s)
250
e 200 2000 Episodes, 100
g Steps
~ 150
£ 100
-2.0 50
0
1 2 4 8 16 32 64 128 256

0 50 100 150 200 250 300 350

Relative Time #nodes



Machine Learning in Experimental Workflows

Beam Line Control and
Data Acquisition (DAQ)

Compressor Nodes

ML for data
compression
(e.g. hit finding).
Use models
learned remotely.

ML to contro
the beam line
parameters

Interfacility workflow icons from ExaFEL project workflow

Local Systems

Online
Monitoring and
Fast Feedback

ML for fast analysis at
the experimental
facility. Uses model
learned remotely.

Network

10 GB/s - 1Th/s

Train, ML networks for image
classification, feature detection,
control policies, surrogate
models, and solving inverse
problems (how to change
experiment params to get
desired experiment result

Remote HPC

Simulate experiments

and diffraction images

at scale to create data
for training. Run
related large-scale

8/11/22



