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Talk Outline

LANL in spring

• Data Management 
− Dynamic Diamond Anvil Cell (dDAC)
− Shock compression 

• High Performance Computing
− Single Particle Imaging 

• Control
− Guided user experiments 
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Data and Computational Workflow Challenges for 
Experiments at Accelerators

• Interdisciplinary effort
• Real-time component
• Connection to resources
• Diversity of applications
• Large data volumes and velocity, in some cases
• Portability
• Sustainability
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Tools for Real-time Dynamic Diamond Anvil Cell 
Experiment Data Analysis

Data Science Thrust Area within: 
Novel in situ Probes of Mesoscale Materials Dynamics, 2019-2021
LDRD Directed Research Project, PI: Dmitry Yarotski, Co-PI: Blake Sturtevant

Christopher 
Biwer

Andres
Quan

Larissa
Huston

Ye Jin
Choi

John 
Lazarz

Dmitry
Yarotski

Blake 
Sturtevant

Christine 
Sweeney



58/11/22

dDAC Analytics Requirements

• Use at HPCAT at APS, PETRA-III at DESY and ultimately at the EuXFEL
• Typically acquire 30-1000 images with 2kHz detector
• Could go to 4.5 MHz at EuXFEL
• Integrated tools, no time for using separate tools
• Help drive experimental design

Diamond

Gasket

Sample

Pressure
marker

X-rays inIn situ X-ray Diffraction allows for time-resolved 
material phase and density determination in 
novel DAC.
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(log scale)

Ti phase transition.  Courtesy B. Sturtevant

Phase transition pressures (start 
and end) for different strain rate 
compressions.  

Motivation/Background – Analyzing Experimental Data 
Quickly Enables Collection of Better Quality Data

Pressure vs TimeXRD

1D Spectra

Contour Map
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Should have collected more 
data in the gold area, which 
has more interesting results.
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Revised Analytics Workflow
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Cinema:Snap Layout

Parallel Coordinates Panel Visualization Selector

View Selector

Data Connector

Address Bar
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Cinema:Snap and Automated Workflow Benefits 

• Open source: https://github.com/cinemascience/cinema_snap
• Open source (future): https://github.com/lanl/analytics_pipeline
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Dynamic Compression Experiment Data Management 
and Real-time Data Analysis

Workflow and Visualization Staff for: 
Real-time Adaptive Acceleration of Dynamic Experimental Science, 2016-2019
ASSIST Project
LDRD Directed Research Project, PI: James Ahrens, Co-PI: Cynthia Bolme
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Big Data Problem at Light Sources, Especially in 
Dynamic Compression/HEDP Science
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Large scale and explosively driven 
facilities (1-2 shots per day)

Dynamic Compression Sector @ APS 
(~1 shot per hour)

MEC @ LCLS (1 shot / 5 minutes)

HIBEF @ EuXFEL (10 Hz)
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Previous State of the art for data management - PPTX

Repeat for each run, one slide per shot, up to several hundred shots 
over an experiment (500+)
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Slide courtesy 
David Rogers
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Slide courtesy 
David Rogers
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Cinema:Bandit multi-data viewer
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Cinema-Bandit for Database Visualization and Curation
Real time display of data populating with runs in real time

Example dataset from MEC-LCLS experiment on shocked high-pressure phases of 
titanium (C. Bolme PI)
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+
Cinema 
Database

Cinema
Bandit

Raw
Data

Example from December 2018 LCLS Imaging Beamtime

Application of Tools to Beam Line Monitoring Data

ASSIST team members 
present: R. Sandberg, C. 
Sweeney, D. Banesh, D. 
Orban
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Cinema Released Open Source cinemascience.github.io

Examples Downloads Documentation
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High-Performance Single-Particle Imaging 
Reconstruction on Pre-Exascale Computing Platforms
ExaFEL: Data Analytics at the Exascale for Free Electron Lasers, 2017 - present

SLAC National Accelerator Laboratory
ExaFEL PI: Amedeo Perazzo
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This research was supported by 
the Exascale Computing Project 
(17-SC-20-SC), a joint project of 
the U.S. Department of Energy’s 
Office of Science and National 
Nuclear Security Administration, 
responsible for delivering a 
capable exascale ecosystem, 
including software, applications, 
and hardware technology, to 
support the nation’s exascale
computing imperative.
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Single-Particle Imaging is Performed via High Repetition Rate 
X-ray Free Electron Lasers (XFELs) 

● Ultrafast X-ray pulses are used like flashes from a high-speed strobe light, yielding 
data that can produce stop-action movies of atoms and molecules.

● These experiments are performed at X-ray Free Electron Laser (XFEL) facilities like LCLS-II at 
SLAC National Accelerator Laboratory.

Single-particles such 
as ribosomes or 
proteins are placed 
in front of the x-ray 
beam and diffraction 
patterns are 
collected on a 
detector behind the 
sample
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Single-particle Imaging Data Requires Image Reconstruction

Image Collection 3D Reconstruction
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ExaFEL: 
Data Analytics at the Exascale for Free Electron Lasers

Local Systems at 
Experiment Facility

Data Acquisition (DAQ) Network Supercomputing Facility

SupercomputerDAQData Data Data Data

Interfacility workflow icons from ExaFEL project workflow

Application Project within Exascale Computing Project (ECP)
Two Thrusts: Serial Femtosecond Crystallography and Single-Particle Imaging

PI: Amedeo Perazzo, SLAC.  Co-PI: Nicholas Sauter, LBNL
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ExaFEL Single-Particle Imaging Workflow Vision
• Produce detailed 3D protein structure and a movie of 

the protein functioning at room temperature.

• Demonstrate this exascale capability at 5kHz rate of 20 
minutes data collection, totalling 6 million 
snapshots.

– On simulated realistic data and real data previously 
collected.

• (Stretch goal) Include additional complexity from 
conformational heterogeneity (obtained when 
molecule is excited through an optical laser, or in 
equilibrium experiments) in the analysis.

• Run multiple 3D electron density reconstruction 
instances for each conformation on each dataset and 
choose the best.

Conformational heterogeneity
closed                                         open

Simulated diffraction pattern
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Challenging Characteristics of LCLS Data Regime
Example data rate for LCLS-II (early 
science)

● 1 x 4 Mpixel detector @ 5 kHz = 40 
GB/s

Example LCLS-II and LCLS-II-HE 
(mature facility)

● 2 planes x 8 Mpixel ePixUHR
@ 50 kHz =  1.6 TB/s



258/11/22
LA-UR-18-21337

ExaFEL Puts Computational Load on Supercomputers
Goal: Ingest 5kHz data for ~20 minutes (typical run length), totalling 6M images

Data 
Acquisition

SpiniFEL on 
supercomputer

Real-time
single hit 
classification

20 mins data collection 20 mins data processing

Peak load

Scenario # Nodes Protein Resolution # Orient # Images # Conformations

Low-end 3,300 3IYF 14 Angstroms 20k 198k 30

High-end 10,000 2CEX 4 Angstroms 60k 12k 500
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GPU Acceleration Shortens SpiniFEL Run Time

Parameters used:
● 1000 images/rank, 2000 orientations, 6 ranks/node, 7 CPUs/rank, 6 GPU/node on Summit
● Dataset: 2CEX, 128 x 128 pixels
● 10 generations (main loop iterations)
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Image Scalability Crucial for Meeting Real-time Constraint
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AI-based Classifier Accurately Classifies Images

Multiple particles in the x-ray 
beam need to be excluded 
from SpiniFEL reconstruction.

Achieves 95% accuracy, f1 
score.
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ExaFEL Automates Data Path and Workflow 
• Resource orchestration

streams and distributes data, 
and reduces job startup time.

• Software-defined network 
(SDN) allows selection of 
uncongested ESnet paths.

• Results in 1.5-2x increase in 
bandwidth throughput for 
the orchestrated dedicated 
path versus the path set up 
using normal routing 
protocols.

• Now automating resource 
coordination, data flow, and 
analytics pipeline.

Image courtesy Chin Guok 
(ESnet, Lawrence Berkeley 
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Machine Learning for Control 

ExaLearn Control Pillar 
ExaLearn Co-Design Center for Exascale Machine Learning Technologies, 9/18 –
Project within Exascale Computing Project, ExaLearn PI: Frank Alexander, BNL
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s 
Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including 
software, applications, and hardware technology, to support the nation’s exascale computing imperative.
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How to Solve Control Problems?
• Controllers

− Good if control algorithm is simple/straightforward and 
experts are available, otherwise could be intractable

• Optimization
− Can utilize HPC and try many solutions, works well for 

problems for which there is a response surface
− Doesn’t work well for more complicated problems

• Supervised Learning
− Good for problems that have a fixed and labeled data 

set.  Like having a supervisor watch and tell which 
action agent should have taken.  Provides an exact 
answer.

• Reinforcement Learning
− Problems where agent must learn by interaction with 

environment, self-teaching, no need for expert control 
engineer or labelled data.

− Used when can formulate problem in terms of Finite 
Markov Decision Process (described later)

Image courtesy Vishakha Jha
https://www.techleer.com/articles/203-machine-learning-algorithm-
backbone-of-emerging-technologies/
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Light Source Experiment Control Use Case:
Block Copolymer Self-assembly

What is a Block Copolymer (BCP)?

Why do we care about BCPs?  
Combining protein and synthetic polymers can create 
functional biomaterials useful for catalysis, 
sensors, nanotechnology and renewable energy.

How is self-assembly of block copolymers 
directed?

a) Block copolymer is in complete disorder.
b) Laser “orders” BCP into horizontal tubes.
c) High-temp annealing helps achieve desired 

morphology while maintaining previous order.

https://www.particlesciences.com/news/technical-briefs/2011/glossary-of-
polymer-terms.html Youngwoo Choo, et 

al.

a

b

c

This process could take hundreds of experimental trials to get right!! 
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Challenges for Block Copolymer Experiments
• BCP experiments are performed at DOE 

light source user facilities.
• Temperature is adjusted to direct the 

formation of the block copolymers to a 
target morphology.

• GISAXS technique is used to detect BCP 
morphology during directed self-annealing 
process

• Light source beam shining on sample at 
small grazing incidence angle produces a 
diffraction pattern

• The multi-dimensional energy landscape 
underlying directed block copolymer self-
assembly requires engineering a 
convoluted pathway in order to obtain a 
target morphology. Image from Nanoscale, 2018, 10, 416.  Choo, Majewski, 

Fukuto, Osuji and Yager.
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Reinforcement Learning for BCP Self-Annealing
Reinforcement Learning (RL) system:
• Simulate BCP self-assembly (via PDE or MD 

sim) and produce a real-space image.  
• Create training data (vector) based on 

morphology of BCP, uses conversion to 
fourier space

• Train RL system with new data point
• Query RL policy developed so far on best 

parameters to try next.  
• Repeat until reach target morphology.

Long-term vision would be to use the learned policy at an experiment and 
also to ultimately transfer experimental data into the RL system.  

• Mapping to Finite Markov Decision Process (MDP):
• Agent – scientist controlling temperature of BCP experiment
• Environment – BCP simulation
• Actions – increase temperature, decrease temperature 
• Reward – numerical value comparing morphology to target morphology
• State – structure vector (characterizes morphology of BCP)

Agent

global 
temperature
(parameter)

SimulatorImage 
structure

Structure 
vector 
(state)

2D/3D 
Structural 
Image

Environment

State and 
reward

Action
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RL algorithm develops policy that helps control 
temperature during self-annealing (a), which 
results in BCP morphology (b).

a b

BCP Reinforcement Learning Challenges and Results
Challenges:

• Training data

• Structure vector to capture 
characteristics
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Questions?
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Backup Slides
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Extreme-scale Machine Learning for Inverse Problems
• Long-term goal: develop and deploy ML-driven solutions of large-scale inverse problems that are directly 

relevant to DOE-related science and technology
• Given a set of observations, inverse problems seek to determine the parameters that produced those 

observations.
• Inverse problems arise in numerous DOE-related scientific application domains, e.g.,

− Fusion physics: given plasma equilibrium profiles in tokamaks/stellarators; determine device diagnostics.
− Microscopy: various kinds of microscopy–electron, scanning tunneling, transmission electron, and others; given a 

microscopy image, determine the material properties that produced the observed image.
− X-ray crystallography: determine structure of target from diffraction patterns produced by it upon bombardment by incident 

X-ray beam.
− Additive manufacturing: determining thermal parameters from target solidification microstructures in powder-bed metal 

additive manufacturing.
• Short-term goal: Develop extreme-scale ML framework to solve the inverse problem of material structure 

determination from neutron scattering experiments.
DAQ Machine

• Diffraction
• Scattering
• Crystallography
• …

Material 
Structure

DescriptionLearning

ExaLearn Approach 

Team Members: Cristina Garcia-Cardona (LANL), Ramakrishnan Kannan 
(ORNL), Travis Johnston (ORNL), Thomas Proffen (ORNL), Daniel Olds (BNL), 
Katherine Page (ORNL/UTK). Team Lead: Sudip K. Seal (ORNL) 

Learning to Predict Material Structure from Neutron Scattering Data, Workshop on Big Data, Tools and Methods (BTSD), IEEE Big 
Data 2019, Los Angeles, Dec 9-12, 2019.

Structure Prediction from Neutron Scattering Profiles: A Data Sciences Approach IEEE Big Data 2020, Dec 10-13, 2020.
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ExaBooster -- FermiLab (FNAL) Booster 
Problem definition:
Reduce beam losses in the FNAL Booster by developing a Machine Learning (ML) 
model that provides optimal set of actions for accelerator controls

FNAL Accelerator Complex: 
Fermilab Site

Booster ring

Courtesy: Christian Herwig

Data is available at zenoto
Original work developed by PNNL, FNAL, University of California San Diego, Columbia 
University
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● Spread in B-field degrades beam 
quality and contributes to losses

● Focusing on min for now:
B_VIMIN = Setting to achieve
B:VIMIN = Prescribed remedy 
from     PID regulator circuit
B:IMINER = Error discrepancy

● Policy model is focused on 
controlling the regulator to reduce 
the error 

Bending 
Magnet 
Current

Time

ExaBooster: The Need for Improving Regulation

Observed 𝛅𝛅I/I for min and max currents: ~10-3 each
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Proof of Concept Workflow for ExaBooster

Historical 
Data 

Digital 
Twin

Reinforcement 
Learning

Policy 
Model 

(baseline)

Calibrated 
Policy 
Model 

Reinforcement 
Learning

FPGA or 
Online GPU

Transfer Learning

O
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O
nl
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● Digital twin provides accurate predictions of future time for key variables to be used by 
the reinforcement learning framework

● Historical temporal information from key variables was available based on subject 
matter expert input
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43

Reinforcement Learning Framework for ExaBooster

Starting with an initial accelerator state, can we train a RL policy to improve 
beam quality through the magnet current ?

Policy
(DQN)

EnvironmentReward

Action
Initial

accelerator state 
condition

Optimized Policy for 
Magnet Current

N×

Memory

Train policy network every M
memories, where memory = {state, 

action, reward, next state}

Control the magnet 
current

Calculate the 
improvement in the 

beam quality

Run Digital Twin (NN surrogate 
model) to predict the state 

change from new action
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ExaBooster Performance Results

2000 Episodes, 100 
Steps

The optimization was formulated as an episodic problem:
● An episode is composed of 100 sequential steps
● After each episode the environment was reset to the same initial state
● A batch size of 32 experiences were randomly sampled to train the active policy model
● A ϵ-greedy method was used to control the level of exploration/exploitation 
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Machine Learning in Experimental Workflows

Compressor  Nodes

Local SystemsBeam Line Control and 
Data Acquisition (DAQ)

Network Remote HPC

TB/s

Supercomputer

10 GB/s - 1Tb/s

Online 
Monitoring and 
Fast Feedback

ML for data 
compression

(e.g. hit finding).  
Use models 

learned remotely.

ML for fast analysis at 
the experimental 

facility.  Uses models 
learned remotely.

ML to control 
the beam line 

parameters

Simulate experiments 
and diffraction images 
at scale to create data 

for training. Run 
related large-scale 

sims.

Train, ML networks for image 
classification, feature detection, 

control policies, surrogate 
models, and solving inverse 
problems (how to change 
experiment params to get 
desired experiment result)

DAQ

Model

Model
Model

Model

Data Data Data Data Data

Interfacility workflow icons from ExaFEL project workflow

Model


