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Light sources

Fermilab CERN - Large Hadron Collider

Interesting Technical Challenges
• Complex/nonlinear dynamics
• Many small, compounding errors 
• Many parameters to monitor and control
• Interacting sub-systems
• On-demand changes in operational state
• Diagnostics sometimes limited or not put to 

full use in control (e.g. images)
• Time-varying/ non-stationary behavior

Uncertain, time-varying, nonlinear, many-parameter systems with continuous action spaces:  
à of great interest for research in control and machine learning
à lots of opportunity to both gain from and contribute to this area

Strong Incentives for Better Control
• Cost of running àTime/energy efficiency of control

• Cost of unintended down-time à Personnel cost, user time, bulk scientific output

• Achieving performance needed for science goals and other applications
• improving accelerator components and control both play a role

JLab

LBNL Visualization Group Fermilab

Novel Acceleration 
Schemes

Small Test Facilities

Large 
User

Facilities

IOTA

AWA

SLAC

Industrial / Medical

LBNL

Emory Proton Therapy Center

AI/ML is well-suited for cross-cutting applications à algorithm transfer between accelerator facilities is possible

Different specific needs, but many 
similar challenges in online modeling, 
machine understanding, and control

Accelerators have unique 
challenges/characteristic à can also 

contribute to AI/ML research



LCLS

Experimenters come for a few days – a week

beam duration, x-ray wavelength etc. 
adjusted for each experiment

1,062 experiments in 2016

~1023 papers since 2009



Nonlinear, high-dimensional optimization problem

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or 
reconstruct based on perturbations of upstream controls

Can have dozens-to-hundreds of controllable variables and 
hundreds-of-thousands to millions to monitor
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J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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Approximate Annual Budget:  $145 million
Approximate hours of experiment delivery per year: 5000

About $30k per experiment hour to run

400 hours hand-tuning in a year
$12 million value

~10 additional experiments
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MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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Rapid beam 
customization

Achieve new 
configurations + 

unprecedented beam 
parameters 

Fine control to 
maintain

stability within 
tolerances 

wide spectrum of tuning needs at different accelerators



In a perfect world…

Use a fast, accurate model …

find some knobs that give us the beam we want and apply those to the machine

get info about unobserved parts of machine (online model / virtual diagnostic)

do offline planning and control algorithm prototyping 

d



In reality things are much more difficult…

nonlinear 
effects / 
instabilities

fluctuations/noise
(e.g. laser spot)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

10 hours on thousands 
of cores at NERSC!

computationally expensive simulations

AI/ML is well-positioned to help address these challenges

laser at FAST



moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change after a 
setting adjustment

à estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

à use model to help select the next 
point

Global Modeling + 
Feed-forward Corrections

Make fast system model

à provide initial guess (i.e. warm 
start) for settings or fast compensation

gradient descent
simplex

Bayesian optimization
reinforcement learning

ML system models +
inverse models

Tuning approaches can leverage different amounts of data/previous knowledge

J. Kirschner

less



Fast-Executing, Accurate System Models
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ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-
fidelity online prediction, tracking of machine behavior, and model-based control

Accelerator simulations that include nonlinear and 
collective effects are powerful tools, but they can 

be computationally expensive
ML models can provide fast approximations to simulations

(“surrogate models”)

< ms execution speed

106 times speedup

10 hours on 
thousands of 
cores at NERSC!



Fast-Executing, Accurate System Models
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ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-
fidelity online prediction, tracking of machine behavior, and model-based control

ML models can provide fast approximations to simulations
(“surrogate models”)

< ms execution speed

106 times speedup

Bringing simulation 
tools from HPC 

systems to 
online/local 
compute

Online prediction
Model-based control

Control prototyping
Experiment planning



Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-boosted design optimization 
(example on AWA)

Warm starts for 
optimization

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 
MLST, 2021



• ML models trained on physics simulations

• Inputs sampled widely across valid ranges
• Used to develop/prototype new algorithms before 

testing online at FACET-II and LCLS e.g. new Bayesian 
optimization methods, adaptive emittance measurement

interactive model widget 
and visualization tools

Simulation and ML model trained 
on it are qualitatively similar to 

measurements

ML model provides accurate replication of simulation

ML models trained on simulations enable fast prototyping of new optimization algorithms à greatly reduces development time

prototyping 
optimization
algorithms

Example: Injector Surrogate Model at LCLS



Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:
static error sources (e.g. magnetic field nonlinearities, physical offsets) 
time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine 
à fast-executing ML model allows fast / automatic exploration of 
possible error sources

Here: calibration offset in solenoid strength found automatically with neural network 
model (trained first in simulation, then calibrated to machine)

injector
settings

laser image

calibration
transforms

longitudinal/
transverse phase space

Without calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

scalars



Provide information about parts of the system that are typically inaccessible
(destructive, too slow, not directly measurable)

Virtual Diagnostics
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model input

co
un

ts

training set new conditions

Fundamental problem for using models online and for 
tuning: distribution shift

à accuracy is degraded on data outside of the statistical 
distribution of the training data

à many ML approaches don’t consider uncertainty 
estimates

model input

co
un

ts
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model input

co
un

ts

training set new conditions

Fundamental problem for using models online and for 
tuning: distribution shift

à accuracy is degraded on data outside of the statistical 
distribution of the training data

à many ML approaches don’t consider uncertainty 
estimates

model input

co
un

ts

wikimedia
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Want to have a reliable model confidence metric before using predictions

à need uncertainty quantification / robust modeling

model input

co
un

ts

training set new conditions

Fundamental problem for using models online and for 
tuning: distribution shift

à accuracy is degraded on data outside of the statistical 
distribution of the training data

à many ML approaches don’t consider uncertainty 
estimates

model input

co
un

ts

wikimedia



Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen 
regions

test 
data

L. Gupta

BNN Predictions
ASTRA Simulation

White area 
– values 
left out of 
training

A. Mishra et. al., PRAB, 2021
LCLS injector transverse phase space  (ensemble)

Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics) 
Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

longitudinal phase space
(quantile regression + ensemble)

In-distribution

Out-of-distribution 

O. Convery, et al., PRAB, 2021

Uncertainty Quantification / Robust Modeling
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Example of beam size prediction and uncertainty estimates under drift from a neural 
network (@ UCLA Pegasus)

Uncertainty estimate from neural network ensemble does not cover the OOD prediction error, but it does give a 
qualitative metric for relative uncertainty

unseen region



à how can we increase model generalization to new conditions and decrease 
data set sizes (i.e. improve sample-efficiency)?

à inherent question: how to make ML models more readily adaptable?

Data sets also present a challenge:

• Most examples above used thousands to tens-of-
thousands of examples

• Not feasible to gather new data in every 
configuration (from simulation or measurements) 

• Not everyone has access to large compute 
resources or ample beam time

21



“Physics-informed” modeling à incorporate physics domain knowledge to reduce need for 
data, and aid interpretability + generalization

Many approaches:
• Combine physics representations and machine 

learning models directly (e.g. differentiable 
simulations)

• Add physics constraints to output metrics

• Force to satisfy expected symmetries
(e.g. inductive biases in ML model)

• Loose form: learn from many physics sims in a 
way that results in good representation of the 
physics (also related to representation learning)

Differentiable Taylor map physics model + weights à train like ML model
needed very little data to calibrate  PETRA IV model

Ivanov et al, PRAB, 2020

Review paper: Karniadakis et al, Nat Rev Phys 3, 422–440 (2021)
Snowmass accelerator modeling white paper: arXiv:2203.08335

Physics-driven representation learning
(e.g. encoder-decoder neural network models)

useful latent space

Many examples in our 
field!

Latent 1

La
te

nt
  2

https://arxiv.org/abs/2203.08335


Higher-precision optimization possible when including hysteresis effects in model

Example: Differentiable Physics + 
ML Modeling of Hysteresis

R. Roussel, et al., PRL, 2022

BO on sys. 
with hysteresis

Hybrid BO on sys.
with hysteresis

Regular GP
Model

Hysteresis + GP
Model

Promising example showing the power of differentiable physics and ML models to enable high-precision characterization and control with minimal data. 

Magnetic hysteresis has been a major impediment 
to high-precision tuning à historically required 
standardization of magnets

New modeling approach combining classical 
Preisach model and a Gaussian Process

Joint modeling of hysteresis and beam propagation is more accurate and enables in-situ 
hysteresis characterization
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à design Gaussian Process kernel from expected correlations between inputs (e.g. quads)

à take the Hessian of model at expected optimum to get the correlations  

vertical emittance
tuning @SPEAR3

No measured data needed ahead of 
time, just a physics model

J. Duris et al., PRL, 2020 
A. Hanuka, et al., PRAB, 2021

FEL tuning @LCLS

Example: Physics-Informed Bayesian Optimization

Including correlation between inputs enables increased sample-efficiency and results in faster optimization
à kernel-from-Hessian enables easy computation of correlations even in high dimension



Better Data Sampling:
Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021

! " = $ " %&! '! " ≥ ℎ!
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Enables sample-efficient 
characterization of high-dimensional 
spaces, while respecting both input 

and output constraints

Efficient Characterization 
with Bayesian Exploration

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints

See Ryan’s tutorial on Friday!



Example: FACET-II Injector Characterization, Modeling, and 
Optimization
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• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) at 700pC: 2 hrs for 10 variables compared to 5 hrs for 4 variables with N-D 
parameter scan

• Data was used to train ML models to predict + optimize beam emittance and 
injector match

• Example of integrated cycle between characterization, modeling, and 
optimization à now extending to larger system sections and new setups (e.g. 
two-bunch)

Use of Bayesian exploration to generate training data is sample-efficient, reduces burden of data cleaning, and can result in a well-
balanced distribution for the training data set over the input space. 

pi
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pixels

transverse phase space



digital twins + online modeling
(fast sims, differentiable sims, model calibration, model adaptation)

ML-enhanced 
diagnostics 

(provide insight at faster rate, 
at higher resolution, 

non-invasively)

anomaly detection
failure prediction

(plan maintenance; 
alert to changes in machine; 
alert to interesting science) 

extract unknown
relationships + correlations

(feed into future control / 
design)

J. Duris
et al., 
PRL, 
2020

C. Emma et al., 
PRAB, 2018

+ need uncertainty quantification for all
+ can incorporate physics information in all 

D
ata 

processing

D
ata 

processing

FACET-II
LCLS

automated control
+ optimization

algorithm transfer between systems

Data reduction/rejection (kHz/MHz data streams)
Event triggering

Broad Set of Areas for ML to Impact Operation

R. Shaloo et al.
arXiv:2007.14340

https://arxiv.org/abs/2007.14340


Community development of re-usable, 
reliable, flexible software tools for 

AI/ML workflows is essential to maximize 
return on investment and ensure 
transferability between systems

Modularity is key: separating different 
parts of the workflow + using shared 

standards

Modular, Open-Source
Software Development

Different software for different tasks:

Optimization algorithm driver (e.g. Xopt)

Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

Online ML model deployment

FACET-IILCLS

Online Impact-T simulation and live display for FACET-II injector; trivial to get running 
using same software tools as the LCLS injector More details at https://www.lume.science/

standard
data 

format

LUME

standard algorithm 
definition

https://www.lume.science/


Conclusions
• Many proof-of-principle results and prototypes 

form a solid foundation for future work

• AI/ML tools can improve achievable beam 
characteristics, reduce tuning time, and aid 
understanding of experiments à now need 
integration into regular operation

• Current/future efforts focus on improving 
robustness, developing hybrid physics + ML 
methods, developing techniques to scale up to 
larger machine sections (requires new 
algorithms/workflows) and more challenging setups, 
and continued software development/deployment 
into regular operation

• Want to learn more? See the USPAS class
“Optimization and Machine Learning for Particle 
Accelerators” https://slaclab.github.io/USPAS_ML/

29

https://slaclab.github.io/USPAS_ML/


Thank you for your attention!

30



Broad Research Program in AI/ML for Accelerators

Roussel et. al. Nat. Comm. 2021

Efficient optimization and characterization (useful also for 
simulation exploration/design, data generation)

Output constraints learned on-the-fly

ground truth validity probability

Hanuka et. al. PRAB , 2021

Techniques for 
combining

physics and ML (more 
reliable/transferrable, 

require less data, more 
interpretable), including 

differentiable 
simulators

Roussel et. al. PRL. 2022

Representation learning
(e.g. better ways of modeling beams)

Online prediction with physics sims 
and fast/accurate ML models

Adaptation of models and identification of sources 
of deviation between simulations and as-built machine

Fundamental 
AI/ML Research

Software 
Tools

Testing/Deployment 
(offline and online)

Software packages and 
standards for data generation, 

modeling, and optimization (LUME, 
xopt, Badger)

integrated development cycle



Future: Full Integration of AI/ML Optimization, Modeling, and Physics Simulations

Data 
processing

Data 
processing

FACET-II LCLS

Data 
processing

Data 
processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Need to integrate disparate methods and proof-of-principle results into a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML 
driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 
combining algorithms efficiently)



• Round to flat beam transforms are 
challenging to optimize

• Took measured scan data at Pegasus 
(UCLA) 

• Trained neural network  model to predict 
fits to beam image

• Tested online multi-objective optimization 
over model (3 quad settings) given present 
readings of other inputs 

x_rms

y_
rm

sNeural 
Network

Readings for other inputs
(at start of optimization only)

Flat Beam Quads (3)

x rms
y rms

pixel intensity
sigma xy

x,y centroids

Genetic 
Algorithm

Pareto front

Results are for 
one full day after 
last training data

Expert hand-tuning: 
10 – 20 minutes
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Pegasus beamline layout with selected distances

updated 1/18/2019 

quads used for flat beam screen location

On machine: can run optimizer on a learned online model



Can use neural network to provide first guess at solution, 
then fine tune with other methods…

E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes

Significant boost in convergence speed for other algorithms



• Use global inverse model to give rough suggested settings 
à then fine-tune with local optimizer

•

• Preliminary study at LCLS: 

- Two settings scanned  (L1S phase, BC2 peak current)

- Compared optimization algorithm with/without warm 
start

A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)

Local optimizer alone was unable to 
converge à able to converge after 

initial settings from neural 
network

warm start+local opt.

local opt. 

Inverse models: example from 
LCLS

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings



Example: Multi-Objective Bayesian Optimization (MOBO)

Can enforce 
smooth 

exploration

(no wild 
changes in 

input 
settings)

R. Roussel, et al., 
PRAB (2021)

Multi-objective optimization (MOO) in accelerators is 
traditionally done offline with high performance computing and 
simulations, or online at individual working points only

• MOBO enables full characterization of optimal beam 
parameter tradeoffs (i.e. the Pareto front) online with high 
sample-efficiency

• Has now been used experimentally at AWA, FACET-II, LCLS 
and SLAC UED

Unprecedented ability to fully characterize tradeoffs between beam parameters in real accelerator systems.



Data 
processing

Data 
processing

FACET-II LCLS

C
on
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Fast Online Modeling

appx. physics sims

adaptive machine
learning models

Edge and Cluster Compute – FPGA/ASIC, CPU, GPU 

detailed physics sims
design optimization
ML model training

Databases

(measurements,
predictions, 

models)

User Interfaces / Visualization

Offline Modeling

A common dream: fully-integrated virtual accelerator

Encourage checking out the Snowmass accelerator 
modeling whitepaper: arXiv:2203.08335

Model-guided 
tuning/characterization

https://arxiv.org/abs/2203.08335

