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with work/examples also from many colleagues, especially: R. Roussel, C. Mayes, C. Emma, S. Miskovich, D. Ratner, |.
Duris, A. Hanuka,A. Scheinker, N. Neveu, L. Gupta, A. Adelmann,Y. Huber, M. Frey, E. Cropp, P. Musumeci, A. Mishra
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Al/ML is well-suited for cross-cutting applications = algorithm transfer between accelerator facilities is possible

-
Large
User
Facilities
EBLﬁgvéf‘H_c;_dron Collder- ‘
\_

Novel Acceleration
Schemes

J

( N\
Industrial | Medical

TP .

v

Different specific needs, but many
similar challenges in online modeling,
machine understanding, and control

Accelerators have unique

challenges/characteristic = can also
contribute to Al/ML research



X-ray Transport
Far Experimental Hall

1,062 experiments in 2016

beam duration, x-ray wavelength etc.
adjusted for each experiment

~1023 papers since 2009



Cathode and RF gun
RF accelerating cavities
Focusing magnets

E E / Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
laser 4
profile P L4 4 e | 4
; i 'ﬂf—:;; photon beam to 7
250 MeV 4.3 GeV 14 GeV experiment
stations
A .
Injector Main Accelerator Sections

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or
reconstruct based on perturbations of upstream controls

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015) AM I IPAC'18
. Marinelli,

Can have dozens-to-hundreds of controllable variables and EFEE)

100 | i
hundreds-of-thousands to millions to monitor 50 o
ol | ¥
. . . . . . . ’ _50 | h
Nonlinear, high-dimensional optimization problem 100
5,000 ; v v . .
gl di |

50 100 150 200 250
t(fs)

A E (MeV)

1(A)

Time (fs)



gun L1X

laser
rofile L1Sl L2-linac L3-linac
proft e : ‘;‘é"&"’ziﬁ_‘ e Hyy H.,—> Pphoton beam to
250 MeV 43GeV  14GeV undulator 7 experiment
stations

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015) A M lli IPAC'18
. Marinelli,

J. Qiang et al, PRAB (2017)

E-Profile (arb.)
100 | i

Energy (MeV)

Energy

o (MeV)

E— \
-40 -20 0 20 40 N W = = o N
Time (fs) ol—t - Time (fs)

50 100 150 200 250
t(fs)

:

1(A)

Approximate Annual Budget: $145 million
Approximate hours of experiment delivery per year: 5000
About $30k per experiment hour to run

$12 million value

400 hours hand-tuning ina year =———> _ (. dditional experiments



wide spectrum of tuning needs at different accelerators

E gun L1X
laser
rofile L1Sl L2-linac L3-linac
et e ' ‘E‘&"’Z-L‘_” — Hy Ho,—> Pphoton beam to
250 MeV 43GeV  14GeV undulator 7 experiment
stations

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

A. Marinelli, IPAC’1 8
J. Qiang et al, PRAB (2017)

2 E-Profile (arb.) 80
100 | 1 60|
% 10 ~ 50 | % 4
= : z -
EB 0 “(J] -50 | EB 20|
2, -100 | 9 .
- 5,000 W \
Time (fs) i 50 100 150 200 250 Time (fs)
t(fs)
Achieve new Fine control to
Rapid .bea.m configurations + maintain
customization unprecedented beam stability within

parameters tolerances




gun LIX

' ' XTCAV
LISy, L2inac 13inac \

B C

Tsomer 2436l 16V wndietr

Use a fast, accurate model ...

find some knobs that give us the beam we want and apply those to the machine

get info about unobserved parts of machine (online model / virtual diagnostic)

do offline planning and control algorithm prototyping



In reality things are much more difficult...

Relative energy (MeV)

computationally expensive simulations

S

-20 0 20
Longitudinal position (zzm)

imulation

40 -40

10 hours on thousands

J. Qiang, et al., PRSTAB30,

Measurement

(e.g. laser spot)

From the 2017-2018run .’
20 0 20 40 N
Longitudinal position(zm)

. . 1F. Wang
# Soe

"y

of cores at NERSC! 054402, 2017
144 40 : .
Booster Q-meterbased inj. eff. measure has a calibration error.
124 H 1 1 1 P 1 1
= reallty 80 100 120 140 160 180
§ 104 Vs. time (davs)
£ 8 H H . . e e e
£l simulation hidden variables / sensitivities
44
24

0 250 500 750 1000 1250 1500 1750 2000

Sample Number

many small, compounding

sources of unce

rtainty

AI/ML is well-positioned to help address these challenges

fluctuations/noise

laser at FAST

drift over time

nonlinear
effects /
instabilities



Tuning approaches can leverage different amounts of data/previous knowledge

less —— assumed knowledge of machine ——— > more
4 ) ( )
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections
J. Kirschner
Observe performance change after a
setting adjustment Update a model at each step Make fast system model
. o > brovide initial e
i gst{mate dlrec.tlon or apply = use model to help select the next prov:de.mltla guess (ie warm‘
heuristics toward improvement point start) for settings or fast compensation
\ J \ J

gradient descent
simplex

Bayesian optimization
reinforcement learning

ML system models +
inverse models



Fast-Executing,Accurate System Models

Accelerator simulations that include nonlinear and

collective effects are powerful tools, but they can ML models can provide fast approximations to simulations
be computationally expensive (“surrogate models”)
Simulation Measurement gun Ly  NeursiNetwork

XTCAV
L2-linac

BC1 , BC2

250MeV “-“43GeV  14GeV

_ L3-linac

undulator

MeV (relative)
MeV (relative)

Linac sim in Bmad with collective beam effects ~

Relative energy (MeV)
Relative energy (MeV)

29 58 87 116
fs (relative)

24 49 74 9
fs {relative)

Scan of 6 settings in simulation
Simulation

oo T
-20

L1 Phase -40 -25.1 deg

y (MeV)

% ]
g g L2Phase 50 0 414 deg H
£ £° L3Phase 10 10 0 deg 3
s S L1 Voltage 50 110 100 percent
e 40 20 o 2o o & 300 0 50 0 24 49 74 9 L L
lanqnzldmal nnswlu;r\ (um) Longitudinal position(xm) L2 Voltage 50 110 100 percent fs (relative) fs (relative)
J. Qiang, et al,, PRSTAB30, L3 Voltage 50 110 100 percent )
10 hours on 054402, 2017 < ms execution speed
thousands of 108 times speedup

cores at NERSC!

ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-

fidelity online prediction, tracking of machine behavior, and model-based control




Fast-Executing,Accurate System Models

ML models can provide fast approximations to simulations

. . . . (13 ”»
Bringing simulation (“surrogate models”)
Neural Network

tools from HPC gun LIX ”®

systems to L2-linac _ 3-linac z” 3
online/local somev B243Gev  14Gev  undulator N i
compute . :

Linac sim in Bmad with collective beam effects ~

29 58 87 116
fs (relative)

0 24 4 74 99

Scan of 6 settings in simulation fs {relative)

Simulation
N N o
-20

L1 Phase -40 -25.1 deg -

L2 Phase -50 0 -41.4 deg é

L3Phase -0 10 0 deg 3

L1 Voltage 50 110 100 percent

. L2Voltage 50 110 100 percent T T ? et
Control prototyplng L3 Voltage 50 110 100 percent
Experiment planning < ms execution speed
Online prediction 10 times speedup

Model-based control

ML modeling enables high-fidelity predictions of system responses with unprecedented speeds, opening up new avenues for high-

fidelity online prediction, tracking of machine behavior, and model-based control




Warm starts for
optimization

A. Scheinker, A. Edelen,
etal, PRL, 2018

Scalar inputs

Convolution Layers

Target
ML Suggested
\ Inverse initial
Model settings
LIS phase
BC2 peak current
gun L1X
l A ) XTCAV
L1S L2-linac L3-linac N
BClhsomev B243Gev  14Gev  undulator

()

Local
optimizer

N Fully Connected
Hidden Layers

Cavity phase Norm. Emittances
Solenoid field Beam Kinetic Energy
Bunch Charge Mean X, Y, Z

Scalar outputs
VCC Size # Particles
Mean X', Y',Z'
K Beam Sizes
i 77 \)
S N\
A \
r
’@”D / \ . %

Deconvolution Layers

L. Gupta, et dl,
MLST, 2021

Smooth interpolation

Example o, surface from 2D scan, LCLS-II Injector

—— Neural Network ~ —— ASTRA
0.10
] 0.00
0.08 ?
£
X 5 0.06
‘,ﬁl 5 = - ™
" D004
0.02 ;_\1
0.00 F\ T T T T \
0.00 0.02 0.04 0.06 0.08 0.10
Solenoid 2 (T)
160 —e— GA with Neural Network
—e— GA with Physics Simulation
S 140 x  Best Known Pareto Front
o
S Physics Sim:
| 120+ ~95k core hrs, 131k sims
& 2246 cores, 36 hours
é 100 A
x Neural Network:
(%) . A. Edelen
~2 mins on a laptop et ol PRAB
809 (500 sims for training) 2020

Include high-dimensional input information = better output predictions

0.35 0.40 0.45 0.50 0.55 0.60 0.65

AE (MeV)

Surrogate-boosted design optimization

(example on AWA)



Example: Injector Surrogate Model at LCLS 7T °"

Solenoid
Laser-Heater
* ML models trained on physics simulations

* Inputs sampled widely across valid ranges

* Used to develop/prototype new algorithms before

testing online at FACET-Il and LCLS e.g. new Bayesian '5% Emittance
optimization methods, adaptive emittance measurement <7 Screens/Wires
RE [ OTR2

Deflector
18 NN Surrogate
F1¢] « ke prototypin 7S , o : :
: P i 4 P t'g 7 ML model provides accurate replication of simulation
<1 optimization
< p . Simulation Neural Network y Profile . . .
8 algorithms 5 i . Simulation and ML model trained
¥ |t / 02 o //\\ on it are qualitatively similar to
§ 101 s i
$ . : zj 5 - 7 X measurements
.\. ~os ;’3015 = ‘U
’ \ 06 e |\
L 07 . x| =
SOLN IN20 121 BDES (KG*m 06 !Ol:” 02 8 01 02 03 yo(:‘) 05 06 07 _ o8
3
E o7 t 3
€ ,
E +
: 06
" — -  interactive model widget 051 & Measurement
E z SOL1.field(T) ° 022 . . . * NN (from sim)
- : « and visualization tools a5 Soebitm
“7":: 044 045 046 047 048 0'49 05

SOLN:IN20:121:BDES (kG*m)

-0005  0.000 0,005 4613 4614 4615 4616 s
x (m) z(m)

ML models trained on simulations enable fast prototyping of new optimization algorithms = greatly reduces development time




Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets)
time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine

- fast-executing ML model allows fast | automatic exploration of

possible error sources

calibration

transforms
-

injector scalars

settings

laser image

longitudinal/
transverse phase space

Here: calibration offset in solenoid strength found automatically with neural network

Inputs

Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid

LOA phase

LOB phase

SQ quad

CQ quad

6 matching quads

Outputs

Beam size (x,y)
Emittance (x,y)
Bunch length

model (trained first in simulation, then calibrated to machine)

1.4 A

= =
o N
L L

o
0

RMS Beam Size (mm)
=) =)
B [e)]

o
[N)

o
o
|

RMS Beam Size (mm)

o
o

—— O, NN
e 0, IMPACT-T
+ 0O, meas. +
+
+
& JL +
Without calibration
0.215 0.216 0.217 0.218 0.219 0.'50

Integrated Solenoid Field (kG-m)

|

=
[N]
L

=
=}
|

o
©
)

o
o
f

o
i
f

o
[N)
)

—— 0x NN
e 0, IMPACT-T
+  0x meas.

| With calibration

044 045 046 047 048 049 050
Integrated Solenoid Field (kG-m)




Virtual Diagnostics Provide information about parts of the system that are typically inaccessible
(destructive, too slow, not directly measurable)

& ™ 7
Adaptively tune a simple physics model Fill in shots: use archive data to learn correlation between
ON e @ © fast and slow diagnostics

—

u” chicane A‘
ters "“"K‘ Detecied Spectrum

>
Urdaed . P/ ’ £
pdase (& LiTrack Simulation Simulated Spectrum

Bunch Length Cost
/N remnnd Prediction A Minimization @

<E
%,

bl T e L
—— B i, & 2
A. Sanchez-Gonzalez, et al., Nature Comms
(2017)
A. Scheinker, S.Gessner, PRAB 18, 102801
(ZOMEy s Hisreree \ v
s >,
=
Predict with a trained neural network Can use spectral information as input to predict beyond
typical diagnostic resolution
. 35 = -100
i : : Shots are
: £ beyond the
_ o mSImme— : _ g : i TCAV resolution
i » EX = Rt BN 8
N : oo £l -
AE:: \ d- 0.60 0.65 0.70 0.75 0.80 0.85
4030 20 00 10 00 & - 4030 20100 10 2030 40 4030 2010 0 0 0 0 @ Spectral intensity [a.u.]
C. Emma, A. Edelen, et al., PRAB21, 112802 (2018) A. Hanuka, et al. 2009.12835 [accepted to Nature Scientific Reports]
& H , A , - y daEaas J




Fundamental problem for using models online and for
tuning: distribution shift

—> accuracy is degraded on data outside of the statistical
distribution of the training data

- many ML approaches don’t consider uncertainty
estimates

training set new conditions

counts
counts

model input model input




Fundamental problem for using models online and for
tuning: distribution shift

accuracy is degraded on data outside of the statistical
distribution of the training data

9

- many ML approaches don’t consider uncertainty ---

estimates

training set new conditions

counts
counts

model input model input

’
.
-

Confidence

Low

\ . Dunning-Kruger Effect

Plateau of Sustainability
Peak of “Mount Stupid”

Slope of Enlightenment

Valley of Despair

A

Know nothing Competence Guru



Fundamental problem for using models online and for
tuning: distribution shift

—> accuracy is degraded on data outside of the statistical
distribution of the training data

\

- many ML approaches don’t consider uncertainty -
estimates

training set new conditions

counts
counts

model input model input

-

Confidence

Low

S Dunning-Kruger Effect
20
’ Plateau of Sustainability

Peak of “Mount Stupid”

Slope of Enlightenment

Valley of Despair

A

Know nothing Competence Guru

Want to have a reliable model confidence metric before using predictions

-> need uncertainty quantification / robust modeling



Y} scatea

Uncertainty Quantification / Robust Modeling

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics)

Pulse Energy (m))
N w »

[=]

BNN Predictions
ASTRA Simulation

0.5

White area
00 —values
left out of

training
-05

-10

0 20‘00 4000 60‘00 80‘00 10000 12600 14600 16000
Index

Scalar parameters for the
LCLS-Il injector
(Bayesian neural network)

A. Mishra et. al., PRAB, 2021

Current profile [kA]

o~
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=
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o
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o
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—— Measured

‘/g regions
* X

unseen

SR
L

4000 6000
Sample Number (Time Ordered)

In-distribution

—— Predicted - ensemble

===~ 90% [0.95-0.05] - quantile [ #20 - ensemble

Out-of-distribution

N

-

—100 0 100
Time [fs]

o

Current profile [KA]

—-200 -100 0 100 200
Time [fs]

longitudinal phase space
(quantile regression + ensemble)
O. Convery, et al,, PRAB, 202

Current approaches

. Ensembles

*  Gaussian Processes
e Bayesian NNs

. Quantile Regression

X . *xiL Gupta  Neural network with quantile
97.5% Quantile [ regression predicting FEL pulse

2.5% Quantile

° X Measurements Available for Training energy Gt LCLS

Measurements Removed from Training
Median

8000 10000

Standard Deviation

Simulation Blur Neural Network

x Profile

01
0.2
03

Counts (arb.)

05
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0.7
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x (m)
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Simulation Blur Neural Network Xprcfia

Standard Deviation
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02 /
0.0 M«/ e
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LCLS injector transverse phase space (ensemble)



Example of beam size prediction and uncertainty estimates under drift from a neural
network (@ UCLA Pegasus)

A

unseen region

v

100 )

Measured | '
—— Predicted (Ensemble Mean) ‘ PA { ﬂ
| |

Ox

40

20

0 20000 40000 60000 80000 100000
Sample Number (increasing time)

175 Measured

—— Predicted (Ensemble Mean)
150 I

125 | | | Ty w '
ol | o T | ' "‘h‘ Wiy h.q

50

y

0 20000 40000 60000 80000 100000
Sample Number (increasing time)

Uncertainty estimate from neural network ensemble does not cover the OOD prediction error, but it does give a
qualitative metric for relative uncertainty

20



Data sets also present a challenge:

* Most examples above used thousands to tens-of-

thousands of examples

* Not feasible to gather new data in every

configuration (from simulation or measurements)

* Not everyone has access to large compute

resources or ample beam time

- how can we increase model generalization to new conditions and decrease
data set sizes (i.e. improve sample-efficiency)?

- inherent question: how to make ML models more readily adaptable?

21



“Physics-informed’ modeling = incorporate physics domain knowledge to reduce need for

data, and aid interpretability + generalization

Differentiable Taylor map physics model + weights = train like ML model
needed very little data to calibrate PETRA IV model

Many approaches: Ivanov et al, PRAB, 2020
* Combine physics representations and machine oL 2 o |
. DB & Fine-tuned TM-PNN
learning models directly (e.g. differentiable @% ] """ SRR N
. . X o i X, X, 0311 [ physics-based model (real)
simulations) % Foz0
B 0.29
. . . L 0.28 Physics-based model (ideal) l\
* Add physics constraints to output metrics A it A e
Qx
* Force to satisfy expected symmetries
(e.g. inductive biases in ML model) Physics-driven representation learning

(e.g. encoder-decoder neural network models)

* Loose form: learn from many physics sims in a

Many examples in our

way that results in good representation of the feld!

physics (also related to representation learning)

Review paper: Karniadakis et al, Nat Rev Phys 3, 422440 (2021)
Snowmass accelerator modeling white paper: arXiv:2203.08335



https://arxiv.org/abs/2203.08335

Differentiable Physics Simulations and ML

Modern ML uses gradients in learning - differentiable physics sims enable modular combinations with ML components, analyses, etc.

Fundamentally new approach in combining physics models, data, and ML

Applied magnetic field
Ho.: = {Ho, Hy,. .., Hi}

+ Hysteresis model

Magnetization
Ty = M (Ho,t)

Gaussian process
model

Beam measurement
Y; = f(ze) +¢

Differentiable physics model of hysteresis
combined with ML enables in situ
characterization of magnetic hysteresis in
accelerator magnets and higher-precision
optimization

Beam Charge (nC)

VIBxDy| (mm)

—— Cycle1
== Cycle 2
124 — Cycle 3
1.0 -
0.8 -
0.6 -
-2 = 0 1 2
Current (A)
BO on sys.
107 - with Hybrid BO on
hysteresis  sys. with
169 N hysteresis
1071

R Roniicecel ef al

100 150 200
Iteration
PRI 2022 arXiv'2202 07747

Toward the End-to-End Optimization
of Particle Physics Instruments
with Differentiable Programming:

arXiv:2203.13818

a White Paper

Differentiable physics models can facilitate instrument-
wide optimization, from accelerator to detector to

le-22 e*e -Higgs—~ZZ-4l

physics analysis

Differentiable matrix
le-23 elements of high energy

|

Heinrich, Kagan,
rXiv:2203.00057

|

-0.6 m
] =02 g 10
mad% =10 i
dx | [z

00 scattering processes

100 —— no gradients
— madjax

80 100 120
Mz (GeV)

140 0




ML-Assisted Optimization and Characterization

Large, nonlinear, and sometimes noisy search spaces for
accelerators and detectors - need to find optima and

examine trade-offs with limited budget (computational
resources, machine time)

ML-assisted optimization leverages learned representations
to improve sample efficiency. Some methods also include
uncertainty estimation to inform where to sample next
(avoid undesirable regions, target information-rich areas).

Similar set of tools for operation and design (with a few
differences: parallel vs. serial acquisition, need for uncertainty-
aware/safe optimization)

y
Bayesian optimization / active learning / reinforcement learning
- All learn iteratively via online interaction with the system

next point to search

A Ty

Learning Algorithm

(GP model + Bayes. opt.,
iterative surrogate, RL
agent)

System (Simulation or
Online Interaction)

data

~\

£x (MM mrad)

-

N

o
f

- W Hwoso
. H- v
80 | W Hysa-n

T T T T T T T
035 040 045 050 055 0.60 0.65

dE (MeV)

04 ¢ NSGAI

T T T T T
0 100 200 300 400 500

Observation
Faster multi-objective optimization
with Bayesian optimization and
iterated surrogate models

R. Roussel et al., arXiv:2010.09824
A. Edelen et al., arXiv:1903.07759

Local generative
surrogates and gradient
descent for the SHiP
magnetic shield design

e
7
7

Pareto front: optimal tradeoff between
parameters of interest

Input Variables Output Beam Parameters

A
¢1 K2 XYz
G, |

¢2 ”x.y,z
U T 100 ae
I

| |

Gun ; |
Cavity /N Linac Cavity

%<

Catho | s
|

X

Solenoids

=

Beam
Propagation

Region ok Region not ok

Output constraints learned on-the-fly
R. Roussel et al., arXiv:2106.09202

Kagan et al.

arXiv:2002.046 3



Efficient Characterization
with Bayesian Exploration

adaptive sampling
Equal lengthscales Short lengthscale

1.0 —_—
1.0

0.8
0.8

0.6 x
06 2

04 5
0.4

0.2
0.2

0.0
0.0

Initial samples Exploration samples == l
o learning
Enables sample-efficient constraints

characterization of high-dimensional

spaces, while respecting both input and
output constraints

See Ryan’s tutorial on Friday!

N
2@ = 0@ | [pili) = h) ¥(xx0)
i=1

@ 5 00 (®)

R. Roussel et. al.
Nat. Comm. 2021

proximal
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Example: FACET-ll Injector Characterization, Modeling, and
Optimization

S FACET-Il Photoinjector Schematic pchioved Targe I

l

0

Laser

<

Solenoid + Quadrupoles

Faraday Cup

Quadrupoles
LOb
uadrupoles

iy 1
o
(]
i3

Sector 10 iyecter Vit
Linac socser 10

Loa

LA

Optimizing Beam Delivery

S

transverse phase space

* Used Bayesian Exploration for efficient high-dimensional characterization (10
variables) at 700pC: 2 hrs for 10 variables compared to 5 hrs for 4 variables with N-D
parameter scan

* Data was used to train ML models to predict + optimize beam emittance and
injector match

* Example of integrated cycle between characterization, modeling, and
optimization = now extending to larger system sections and new setups (e.g.

two-bunch)

B

B

Measured

¥ ¥ 5 %

pixels

Predicted

Use of Bayesian exploration to generate training data is sample-efficient, reduces burden of data cleaning, and can result in a well-

balanced distribution for the training data set over the input space.




Broad Set of Areas for ML to Impact Operation

IS

w

-

X-ray pulse energy (m))
N

automated control
+ optimization

T~

Data reduction/rejection (kHz/MHz data streams)
Event triggering

ML-enhanced

diagnostics
(provide insight at faster rate,

BC14

= =

—— standard optimizer

l
L2 (e) )—/—\-O L3 (e)

GP optimization

——— GP w/ correlations

0 10 20 30 40 50
Step number

+

algorithm transfer between systems

BC20

TCAV

5

Final Focus &
Experimental Area

)
S

Energy Offset [MeV]
8 o

at higher resolution,
non-invasively)

C. Emma et al.,
Q?AB, 2018

A

40
E gun L1X + -40 -30 -20 -1;)[:)mJ10 20 30 40
T \ l , . XTCAV
L1S L2-linac L3-linac \ \ anomaly detection
BClysomev BC243Gev  14Gev undulator failure prediction

X

=

digital twins + online modeling
(fast sims, differentiable sims, model calibration, model adaptation)

N

extract unknown
relationships + correlations
(feed into future control /
design)

B9 (10° fs%)

(plan maintenance;
alert to changes in machine;
alert to interesting science)

Predicted Charge (pC)

R. Shaloo et al.
arXiv:2007.14340

10 -05 00 05 10
B2 (10° fs?)

+ need uncertainty quantification for all
+ can incorporate physics information in all


https://arxiv.org/abs/2007.14340

Modular, Open-Source
Software Development

Community development of re-usable,
reliable, flexible software tools for
Al/ML workflows is essential to maximize
return on investment and ensure
transferability between systems

Modularity is key: separating different
parts of the workflow + using shared

standards

Xopt <

i,

optic.ms: -
n_initial_samples: 5
n_steps: 25
Standard generator_options:
S|mulat|on Data Set data batch_size: 1

Impact
ASTRA
GPT LUME gen_l.json X
Bmad . open v root:
Genesis PMD . ]
» variables:
SRW generation: 1
work in progress: » vocs:
elegant »error: [] 1241 items

» inputs: [] 1241 items
» outputs: [] 1241 items

standard algorithm
definition

algorithm:
name: bayesian_exploration

#sigma: [[0.01, 0.0],
use_gpu: False

format

simulation:
name: test_TNK
evaluate: xopt.tests.evaluator:

voCcs:
name: TNK_test
variables:
x1: [0, 3.14159]
x2: [0, 3.14159]
objectives: {yl: MINIMIZE}
constraints:
c1: [GREATER_THAN, 0]
T c2: ['LESS THAN'. @.51

Online Impact-T simulation and live display for FACET-II injector; trivial to get running
using same software tools as the LCLS injector

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)

Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,

and software interfaces (e.g. openPMD)

Online ML model deployment

More details at https://www.lume.science/



https://www.lume.science/

Conclusions

® Many proof-of-principle results and prototypes
form a solid foundation for future work

® AI/ML tools can improve achievable beam
characteristics, reduce tuning time, and aid
understanding of experiments = now need
integration into regular operation

® Current/future efforts focus on improving
robustness, developing hybrid physics + ML
methods, developing techniques to scale up to
larger machine sections (requires new
algorithms/workflows) and more challenging setups,
and continued software development/deployment
into regular operation

® Want to learn more? See the USPAS class
“Optimization and Machine Learning for Particle
Accelerators” https://slaclab.github.io/USPAS ML/

THE UNIVERSITY OF

CHICAGO

JQ .:\ o €0 A > VATONAL
I\.s"[b “ I BERKELEY LAB <l i [CoiorAre"

Optimization and Machine Learning for
Particle Accelerators:

E\. Team

Instructors:
-

N &

Christopher Mayes Ryan Roussel

Auralee Edelen Adi Hanuka Remi Lehe

(SLAC) (prev. SLAC, now (LBNL) (SLAC) (SLAC)
Eikon Therapeutics)

Graders:

Mauricio Ayllon Unzueta
(U.C. Berkeley)

Jorge Diaz Cruz
(U. New Mexico)
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https://slaclab.github.io/USPAS_ML/

Thank you for your attention!
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Broad Research Program in AI/ML for Accelerators

Online prediction with physics sims Efficient optimization and characterization (useful also for

integrated development cycle
and fast/accurate ML models

simulation exploration/design, data generation)

ground truth

Fundamental Software
AI/ML Research Tools
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Testing/Deployment
(offline and online)

Output constraints learned on-the-fly

Representation learning
Applied magnetic field @ (e.g. better ways of modeling beams)
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Future: Full Integration of Al/ML Optimization, Modeling, and Physics Simulations

Need to integrate disparate methods and proof-of-principle results into a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML
driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,
combining algorithms efficiently)
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On machine: can run

3
S

irror; 0.626m

LINAG; 1.716m

7
j Dipole 1
e

Window (empty)

- o
y

quads used for flat beam

* Round to flat beam transforms are
challenging to optimize

* Took measured scan data at Pegasus
(UCLA)

* Trained neural network model to predict
fits to beam image

+ Tested online multi-objective optimization
over model (3 quad settings) given present
readings of other inputs

Steering 3

Skew Quad 1; 2.836m

optimizer on a learned online model

Expert hand-tuning:
10 — 20 minutes

screen location

Genetic
Algorithm

X rms
y rms
pixel intensity
sigma xy
X,y centroids

Flat Beam Quads (3)

.
Readings for other inputs
(at start of optimization only)

Results are for
one full day after
last training data




Can use neural network to provide first guess at solution,
then fine tune with other methods...

i

Hand-tuning in seconds vs. tens of minutes

Significant boost in convergence speed for other algorithms

E. Cropp et al., in preparation



Inverse models: example from
LCLS

Use global inverse model to give rough suggested settings

=> then fine-tune with local optimizer

Preliminary study at LCLS:
- Two settings scanned (LIS phase, BC2 peak current)

- Compared optimization algorithm with/without warm
start

Initial

Feedback final

Target

\

Feedback + NN Final

AE (GeV)

-400 0 400 .
time (fs)

A. Scheinker, A. Edelen, et al, PRL 121, 044801 (2018)

Target
ML Suggested
\ Inverse initial
Model settings
LIS phase
BC2 peak current
gun L1X
l ) ) XTCAV
L1S L2-linac L3-linac \

BCTosomev B243Gev  14Gev  undulator

()

Local
optimizer

Local optimizer alone was unable to
converge = able to converge after

tial settings from neural
network




Example: Multi-Objective Bayesian Optimization (MOBO)

Multi-objective optimization (MOO) in accelerators is

. . . . . Input Variables Output Beam Parameters
traditionally done offline with high performance computing and . A 3 e
simulations, or online at individual working points only %< ¢, Ko, Z’"’Z

5; G Bl | B | 2E
* MOBO enables full characterization of optimal beam Cathode (o e J :J = ‘ U = l ‘ 1
parameter tradeoffs (i.e. the Pareto front) online with high %M lLinai’ Lam‘y» | .
sample-efficiency Solenoids e
* Has now been used experimentally at AWA, FACET-II, LCLS (@) 550
and SLAC UED = 500 -
(a) W £
. e | = Can enforce
801 ++¢‘°.. 5 140 400 : j J
SV R EA bk (b) 550 - smooth
i € 120 A .
“1( + | : — w050 | 100 = 500 - exploration
R I E
10 1 ¢ NSGA-II 80 4 mum HN’SGA_” ' 450 A
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' dE (MeV) 0 100 200 300 .
Observation Ch anges(:;'ﬁ’ (;J;LI,)

Unprecedented ability to fully characterize tradeoffs between beam parameters in real accelerator systems.



L1X

gun

A common dream: fully-integrated virtual accelerator

Offline Modeling

detailed physics sims
design optimization
ML model training
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Databases

(measurements,
predictions,
models)

Encourage checking out the Snowmass accelerator
modeling whitepaper: arXiv:2203.08335

Snowmass21 Accelerator Modeling Community White Paper

by the Beam and Accelerator Modeling Interest Group (BAMIG)*

Authors (alphabetical): S. Biedron'?, L. Brouwer?, D.L. Bruhwiler’, N. M. Cook’, A. L.
Edelen®, D. Filippetto!, C.-K. Huang®, A. Huebl!, N. Kuklev*, R. Lehe!, S. Lund'?, C.
Messe!, W. Mori'?, C.-K. Ng®, D. Perez®, P. Piot*®, J. Qiang!, R. Roussel®, D. Sagan?, A.
Sahai'!, A. Scheinker?, E. Stern'4, F. Tsung!?, J.-L. Vay!, D. Winklehner®, and H. Zhang®


https://arxiv.org/abs/2203.08335

