

Machine Learning for Anomaly Detection and Classification in Particle Accelerators

Ihar Lobach (APS, ANL)

NAPAC 2022 TUYE4 Albuquerque, NM Tuesday, August 9th, 2022 Other contributors:

Michael Borland, Katherine Harkay, Yine Sun, Robert Soliday, Nikita Kuklev, Alexandre Sannibale (APS) Jonathan Edelen, Abdou Diaw (RadiaSoft)

The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Outline

A set of studies to explore possible ML applications at APS:

Supervised ML for anomaly classification in the APS injector:

- Perturbed Process Variables (PVs) are included in model input
- Perturbed PVs are not included in model input

Unsupervised ML for anomaly detection and clustering:

- Autoencoders for groups of related PVs
 - PAR BPMs and Correctors
 - Detection of power supply trip precursors in the APS storage ring
- Autoencoders and Variational Autoencoders for anomaly clustering

Part 1: Supervised ML

Problem Statement:

- Occasionally, poor transmission efficiency is observed in the Particle Accumulator Ring (PAR) and in the Linac-To-PAR transport line (LTP)
- The machine expert is needed to restore good efficiency, but they may not be readily available.
- Can we train an ML model to pinpoint the source of poor performance?
- Advantage of carrying out this study in PAR and LTP is that a considerable dedicated study time is available. Therefore, we can:
 - Create intentional perturbations in PAR and LTP, resulting in poor injection/extraction efficiency
 - Log all available PVs of the machine
 - Use these data as labeled training data for supervised ML

LTP and PAR Component Overview

Data from Jan 30, 2022

Data Collection Routine

- 5 studies between Nov, 2021 and July, 2022
- At all times, we log ~9000 PVs at 2Hz, which is the injection cycle rate
- First, we search for the perturbation limits
- Then, we automatically ramp perturbation PVs one by one within the found ranges
- The limit search can be automated: we developed a program that moves each PV in small steps until the extracted charge drops below a certain threshold

NAPAC'22 | Ihar Lobach

Model input:

- PAR BPMs
- PAR Correctors
- LTP BPMs
- LTP Correctors
- PAR Charge (10 timesteps within injection cycle)
- LTP and PTB charges
- Injection and Extraction efficiencies
- Linac trigger timing
- PAR kicker timings
- PAR Quadrupoles and Dipoles
- LTP Quadrupoles and Dipole

Overall, ~200 PVs

The perturbed PVs can be included in the model input, or not.

Model Input and Output

This neural network is for illustration purposes only. The real architecture is different.

odel output:	poss perfe
seline'	0.50
BM:CurrentAO'	0.04
Q1:CurrentAO'	0.01
Q2:CurrentAO'	0.10
Q4:CurrentAO'	0.01
P:B1:CurrentAO'	0.09
P:H3:CurrentAO'	0.19

The model returns probabilities for the possible causes of poor performance, .e.g.,

entAO'	0.01
entAO'	0.10
entAO'	0.01
rrentAO'	0.09
rrentAO'	0.19
g2ParIpAO'	0.03
2ParlpAO'	0.01
2ParlpAO'	0.02

The possible signatures include the reduced charges in different parts of the machine, changed BPM signals, changed charge vs. time within one injection cycle, changed corrector strengths (due to the orbit control law in PAR and due to the trajectory control law in LTP).

Possible Implementation in Daily Operations

•••			ssh			て第1
+	+ l prediction number 1	+ prob1	prediction number 2	l prob2	Frediction number 3	++ prob3
+=====================================	+=====================================	+======++++++++++++++++++++++++++++++++	P:BM:CurrentAO	+=====================================	P:Q4:CurrentAO	=+======+ 0
LightGBM	LTP:H3:CurrentA0	+ 0.995	L2:PP:phaseAdjA0	0.004	l baseline	·++ 0
AdaBoost	LTP:H3:CurrentA0	+	L2:PP:phaseAdjA0	0.097	l baseline	0.045
Random Forest	LTP:H3:CurrentA0	0.213	LTP:B1:CurrentAO	0.135	P:Q4:CurrentA0	0.124
		+		+		++

This video is using synthetic data for illustration purposes. This is why predictions change so often.

- A simple prediction table in the terminal (updated every 2 seconds)
- The predictions and the machine state are continuously logged
- When new training data are available, all 4 ML models can be retrained by running one script in the terminal

Neural Network Classifier Performance Perturbed PVs are included in model input

- The training data were collected in 2021 on November 4, 6, and 14
- Neural net architecture: $167 \rightarrow 80 \rightarrow Dropout \rightarrow 80 \rightarrow Dropout \rightarrow 40 \rightarrow 7 \rightarrow SoftMax$
- Then, the model is tested (see below) on the data collected on January 30, 2022

Neural Network Classifier Performance Perturbed PVs **are not** included in model input

- The training data were collected in 2021 on November 4, 6, and 14
- Neural net architecture: $155 \rightarrow 80 \rightarrow Dropout \rightarrow 80 \rightarrow Dropout \rightarrow 40 \rightarrow 7 \rightarrow SoftMax$
- Then, the model is tested (see below) on the data collected on January 30, 2022

Lessons Learned

- Outliers must be removed. An effective one-fits-all approach is Isolation Forest.
- Training convergence is sensitive to data scaling. Good choices from sklearn: RobustScaler, QuantileTransformer, StandardScaler
- Loss function must be weighted according to the sizes of anomaly classes.
- To improve accuracy for the "baseline" class, one can regularly augment the training data by
 - Fresh baseline data
 - Fresh routine SCR saves (machine snapshots, made by operators or studiers)
- Using many input PVs may cause overfitting and poor generalization. Dropout layers are necessary to prevent overfitting.
- Dimensionality reduction techniques may further improve performance.

https://scikit-learn.org/ https://pytorch.org/ https://www.tensorflow.org/

Part 2: Unsupervised ML

Neural Network Autoencoder:

Goal: reconstruct input values

$$\mathcal{L}_{\text{MSE}} = rac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{n} \left(x_i^{(j)} - x_i'^{(j)} \right)^2$$

NN schematic: https://alexlenail.me/NN-SVG

 If we train an autoencoder on "normal" data, then the reconstruction error will be low for normal data, and (likely) high for anomalous data

Autoencoder performance example with the MNIST data set:

SOUICE: MIT 6.S191 (2020): Introduction to Deep Learning Deep Generative Modeling Lecturer: Ava Soleimany January 2020

Possible Applications in APS Injector

Use for groups of PVs to better localize the source of poor performance: Examples of such groups:

- Beam-to-RF phases at different klystrons in the linac
- Linac-To-PAR trigger and PAR kicker timings
- Linac-To-PAR transport line BPM signals and corrector strengths
- PAR BPM signals and corrector strengths

NN schematic: https://alexlenail.me/NN-SVG

Possible Applications in APS Injector

Use for groups of PVs to better localize the source of poor performance: Examples of such groups:

- Beam-to-RF phases at different klystrons in the linac
- Linac-To-PAR trigger and PAR kicker timings
- Linac-To-PAR transport line BPM signals and corrector strengths
- PAR BPM signals and corrector strengths

24 inputs: Horizontal BPM signals (16) Horizontal corrector currents (8) PAR dipole and quadrupole currents were **not** included

NN schematic: https://alexlenail.me/NN-SVG

Loss function: Mean Squared Error (MSE)

Autoencoder Anomaly Detection Performance in PAR

- Autoencoder was trained on the "baseline" data from Jan 24 to Jan 30, 6 pm
- It is then tested on the poor-performance data with intentional perturbations during the study on Jan 30, after 6 pm (see below)

 The anomaly threshold is chosen as the 99.9 percentile for the reconstruction error in the training data

Autoencoder Reconstruction Performance and Latent Space (for the baseline data that were used for training)

Autoencoders for Anomaly Clustering

Data from Jan 30 shift, 3D latent space

We couldn't achieve disentanglement (partly, because we varied PVs one by one). But, at least, the latent space is more regularized with β -VAE

Regular Autoencoder

- Nothing can be assumed about the latent space distribution
- Regular autoencoders may place two "similar" points far apart in the latent space, if it minimizes the reconstruction error. Prone to overfitting
- The distribution in the latent space is often sparse and hard to interpret

 β -Variational Autoencoder

- Points are more symmetrically distributed around (0,0,0) and the size of the distribution is of the order of 1, because of the Gaussian prior.
- The clusters are more continuous because of the probabilistic nature of VAE
- Parameter $\beta > 1$ encourages a disentangled representation

NAPAC'22 | Ihar Lobach

VAE and β -VAE

Kullback-Leibler divergence between

the encoder and the prior distribution of latent space $p_{\theta}(z)$ [usually N(z; 0, I)]

Published as a conference paper at ICLR 2017

 β -VAE: LEARNING BASIC VISUAL CONCEPTS WITH A

 $\mathcal{L}(\theta,\phi;\mathbf{x},\mathbf{z},\beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$

Approximately MSE

[Submitted on 20 Dec 2013 (v1), last revised 1 May 2014 (this version, v10)]

Auto-Encoding Variational Bayes

Diederik P Kingma, Max Welling		CONSTRAINED VARIATIONAL FRAMEWOR	K
4 4 4 6 6 4 4 4 6 6		Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Gl Matthew Botvinick, Shakir Mohamed, Alexander Lerchner Google DeenMind	prot,
4422	222223355566666882	β -VAE V/	λE
	1 2 2 2 3 3 3 5 <td>width (a) azimuth</td> <td></td>	width (a) azimuth	
7 7 7 7 7 9 9 9 7 9 9 9 7 9 9 9 7 9 9 9 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 9 9 5 6 7 7 7 7 1	(c) leg style (b)	
E learns a constrained and	d continuous representation	β -VAE encourages a disentangle	d representation

NAPAC'22 | Ihar Lobach

Other Applications of Autoencoders at APS

Detecting precursors for magnet power supply trips in the APS **Storage Ring**:

- Based on temperature data
- Based on current noise monitor data

For more details, please see our poster **TUPA29**

Anomalies in Power Supply Temperatures in the Storage Ring

today: TUPA29

Fri 18:00

Anomalies in Power Supply Currents in the Storage Ring

- Trained neural network autoencoders for 1320 power supplies for quadrupoles, sextupoles, horizontal and vertical correctors.
- Using historical data from the current noise monitors
- The application allows to quickly examine every anomaly and decide whether any maintenance is needed

For more details, see our poster later today: **TUPA29**

				APS-Ar	nomaly-Detection	- Mozilla Firefo	х						-
 	III APS-Anomaly-Detection × -	F											
Ime Interval 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 You have selected the Interval from Run2008-2 to Run2021-1 Power Supplies	← → ♂ ଢ	(i) carnation:8000								⊵ ☆		1111	
2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Vou have selected the interval from Run2008-2 to Run2021-1 Power Supplies 2 2 5 3 3 5 4 5 2 2 2 5 3 3 5 4 2 2 5 3 5 4 5 2 2 5 3 5 4 5 2 3 5 5 4 4 5 UPDATE FIGURES UPDATE FIGURES UPDATE FIGURES UPDATE FIGURES Rum_2017-1_033 524:V3 P.S. glitch [P5] Rum2017-2_086 524:V3 Loss Reason Rum2017-2_085 524:V3 Rum2017-2_085 S24:V3 Rum2017-2_022 S24:V3	Time Interval												
Power Supplies	2005 2006 2007 You have selected the interval fi	2008 2009 rom Run2008-2 to Run2021-1	2010	2011 2012	2013	2014	2015	2016	2017	2018	2019	2020	°0
I SZAV3 Anomaly Threshold I	Power Supplies												
Anomaly Threshold 1.5 2 2.5 3 3.5 4 4.5 5 UPDATE ANOMALIES TABLE UPDATE FIGURES Detected Anomalies Run2017-1_013 SZA:V3 SZA:V3 P.S. glitch [PS] Run2017-2_000 SZA:V3 Int Dump: End of Period × Run2017-2_022 SZA:V3 Int Dump: End of Period	× S2A:V3	× -											
	Anomaly Threshold 1.5 2 2.5 3 UPDATE ANOMALIES TABLE Detected Anomalie Detected Anomalies Run_Fill P × Run2017-1_013 S2A:V × Run2017-2_008 S2A:V × Run2017-2_022 S2A:V	3.5 4 4.5 5 UPDATE FIGURES S S Loss Reason 3 S2A:V3 P.S. glitch [P5] 3 Int Dump: End of Period 3 Int Dump: End of Period											

Conclusions

Supervised ML:

- The neural network classifier for PAR and LTP is rather accurate and generalizes well (with perturbed PVs included or not included in model input)
- One disadvantage is that supervised ML requires labeled data
- One can automate the data collection process and re-run it after every shutdown

Unsupervised ML:

- Autoencoders, trained on normal-operation data, can be effective at detecting anomalies in groups of related process variables (PAR orbit, LTP trajectory, timings, beam-to-rf phases)
- β-Variational Autoencoders can be useful for anomaly clustering and dimensionality reduction

Thank you for your attention!

