The e⁻e⁺ Future Circular Collider FCC-ee

Frank Zimmermann, CERN Michael Benedikt, CERN ; Tor Raubenheimer, SLAC Katsunobu Oide, KEK & U. Geneva

on behalf of the FCC collaboration and FCCIS DS team

F-IADF

NAPAC

LHC

FCC

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **iFAST**, grant agreement no. 101004730, **FCCIS**, grant agreement 951754, and **E-JADE**, contract no. 645479

IFAST

Horizon 2020 European Union funding for Research & Innovatior

C FUTURE **The FCC integrated program** CIRCULAR **inspired by successful LEP – LHC programs at CERN**

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program

The e⁺e Future Circular Collider Frank Zimmermann NAPAC22, Albuquerque, 9 August 2022 a similar two-stage project CEPC/SPPC is under study in China

technical timeline of FCC integrated programme

FUTURE CIRCULAR COLLIDER

FCC-ee in a nutshell

- High luminosity precision study of Z, W, H, and tt
 2×10³⁶ cm⁻²s⁻¹/IP at Z (or total ~10³⁷ cm⁻²s⁻¹ with 4 IPs), 7×10³⁴ cm⁻²s⁻¹ at ZH, 1.3×10³⁴ cm⁻²s⁻¹ at tt
 , unprecedented energy resolution at Z (<100 keV) and W (<300 keV)</p>
- Low-risk technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors ; R&D on components for improved performance, but no need for "demonstration" facilities; LEP2, VEPP-4M, PEP-II, KEKB, DAΦNE, or SuperKEKB already used many of the key ingredients in routine operation
- Infrastructure will support a century of physics
 FCC-ee → FCC-hh → FCC-eh and/or several other options (FCC-mm, Gamma Factory ..)
- **Utility requirements** *similar to CERN existing use*
- **Strong support** from CERN, partners, and 2020 ESPPU
- Detailed multi-domain feasibility study underway for 2026 ESPPU

FUTURE CIRCULAR COLLIDER

FCC-ee parameters

Parameter [4 IPs, 91.1 km,T _{rev} =0.3 ms]	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1400	135	26.7	5.0
number bunches/beam	8800	1120	336	42
bunch intensity [10 ¹¹]	2.76	2.29	1.51	2.26
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.5/8.8
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [m]	10	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter _x / _y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.32 / 15.2	3.55 / 7.02	2.5 / 4.45	1.67 / <mark>2.54</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	181	17.3	7.2	1.25
tot. integr. luminosity / yr [ab-¹/yr]	86	8	3.4	0.6
beam lifetime rad Bhabha / BS [min]	19 / ?	20 / ?	10 / 19	12 / 46

FCC-ee Design Outline

Double ring e⁺e⁻ collider

Common footprint with FCC-hh

Asymmetric IR layout and optics to limit SR towards the detector

Large crossing angle 30 mrad, "virtual" crab-waist collision, fourfold superperiodicity: 2 or 4 IPs

SR power 50 MW/beam

Top-up injection requires booster synchrotron in collider tunnel

The e⁺e Future Circular Collider Frank Zimmermann NAPAC22, Albuguergue, 9 August 2022

FUTURE

CIRCULAR COLLIDER

a case for four IPs & experiments

Four different FCC-ee detectors to optimally address: (1) Higgs factory program; (2) Ultraprecise electroweak & QCD physics; (3) Heavy Flavour physics; (4) Search for feebly coupled particles

For FCC-hh, two high-luminosity general-purpose experiments and two specialized experiments are foreseen, similar to present LHC detectors

COLLIDER

FCC-ee & hh would share the 4 experimental caverns

accelerator R&D examples

efficient RF power sources

efficient SC cavities

Jefferson Lab

Eacc (MV/m)

FPC & HOM coupler, cryomodule, thin-film coatings...

energy efficient twin aperture arc dipoles

0.5 T LOT

under study: CCT HTS quad's & sext's for arcs

FCC-ee Pre-Injector - Swiss CHART 2 program

Collaboration between PSI and CERN with external partners: CNRS-IJCLab (Orsay), INFN-LNF (Frascati), KEK/SuperKEKB as observer, INFN-Ferrara – radiation from crystal

 P^3 : PSI e⁺ production experiment with HTS solenoid at SwissFEL planned for 2024/25

~300 m

! 1.54 GeV

BCs

~100 m

e-Linac

1.54 GeV

Positron source

P. Craievich et al.

Electron

source

FUTURE CIRCULAR COLLIDER

FCC-ee mock-ups for arcs and IR

Girder

Arc half-cell mock-up

FUTURE

CIRCULAR

- Arc half-cell: most recurrent assembly of mechanical hardware in the accelerator (~1500 similar FODO)
- Mock-up → Functional prototype(s) → Pre-series → Series
- Building a mock-up allows optimizing and testing fabrication, integration, installation, assembly, transport, maintenance
- Working with structures of equivalent volumes, weights, stiffness

IR mock-up

Step 1: Central IP vacuum chamber (test the cooling system and the vacuum system), AIBeMet162
& steel transition (study the shape of the transition, EBW process), Bellows (vacuum and thermal tests),
Welding (EBW for elliptical geometry)

Step 2: Trapezoidal vacuum chamber with remote vacuum connection, first quadrupole QC1, cryostat, beam pipe and quadrupole and cryostat support, vibration & alignment sensors

International FCC-ee R&D | focus on US

European Strategy Update '20, CERN Council, European Commission (EuroCirCol, EasiTrain, FCC Innovation Study – FCCIS), Switzerland (CHART program), partners \rightarrow strong support for FCC

- "Addendum III to Accelerator Protocol III for Participation by the U.S. Department of Energy in the Future Circular Collider Feasibility Study" agreed by CERN & DOE Office of Science in 2020
- Unique expertise at US national labs & universities (SLAC, FNAL, BNL, JLAB, LBNL, ANL, Cornell, U. Hawaii, etc.): collider beam physics (PEP-II, SLC, Tevatron, CESR, SuperKEKB, KEKB, ...), SRF, magnets, polarised beams, low-e rings, beam diagnostics, collimation, machine-detector interface, ...
- **Substantial synergies with the EIC** (highly similar beam parameters and challenges for FCC-ee & EIC ESR !); presently setting up joint working groups in various domains
- **Synergies with SuperKEKB / BELLE II** addressed with help of U. Hawaii, BNL, and other US BELLE II members
- **Europe-America-Japan Accelerator Development and Exchange Programme (EAJADE)**, recently approved by the EC with highest rating, addresses key technical challenges for future Higgs factories, through collaboration with partner institutes in US and Japan, including FCC-ee R&D
- *Ex. themes:* Nb₃Sn/Cu ... HTS magnets for FCC-ee & FCC-hh, C³ linac for FCC-ee injector

SuperKEKB / Belle II

Design: double ring e⁺e⁻ collider as *B***factory** at $7(e^{-})$ & 4(*e*⁺) *GeV*; target luminosity ~6 x 10³⁵ cm⁻²s⁻¹; $b_v^* \sim 0.3$ mm; beam lifetime \sim 5 min; top up inj.; e⁺ rate up to \sim 2.5 10¹² /s ; under commissioning

 \mathcal{L}_{peak} = 4.7 x 10³⁴/cm²/sec nanobeams: vertical beam spot size 300nm (design 50nm)

This is four-times PEP-II peak with much lower beam currents.

>2 x higher than KEKB

Not easy: ran throughout the two years of the COVIDpandemic with social distancing.

Integrated a BaBar size data sample, 428 fb⁻¹. Need more running time.

world record luminosity of 4.71×10^{34} cm⁻²s⁻¹ on 22 June 2022, $b_y^* = 1.0$ mm in routine operation, also $b_y^* = 0.8$ mm demonstrated in both rings – with FCC-ee-style "virtual" crabwaist collision scheme originally developed for FCC-ee (K. Oide)

Electron Ion Collider (EIC)

US EIC Electron Storage Ring similar to, but more challenging than, FCC-ee beam parameters almost identical, but twice the maximum electron beam current, or half the bunch spacing, and lower beam energy

~10 areas of common interest identified by the FCC and EIC design teams, addressed through joint EIC-FCC working groups.

EIC will start beam operation about a

decade prior to FCC-ee

The EIC will provide another invaluable opportunity to train the next generation of accelerator physicists on an operating collider, to test hardware prototypes, beam control schemes, etc.

	EIC	FCC-ee-Z
Beam energy [GeV]	10 (18)	45.6 (80)
Bunch population [10 ¹¹]	1.7	1.7
Bunch spacing [ns]	10	15, 17.5 or 20
Beam current [A]	2.5 (0.27)	1.39
SR power / beam /meter [W/m]	7000	600
Critical photon energy [keV]	9 (54)	19 (100)

optimized placement and layout

8-site baseline "PA31"

FUTURE

COLLIDER

Number of surface sites	8
LSS@IP (PA, PD, PG, PJ)	1400 m
LSS@TECH (PB, PF, PH, PL)	2143 m
Arc length	9.6 km
Sum of arc lengths	76.9 m
Total length	91.1 km

- 8 sites less use of land, <40 ha instead 62 ha
- Possibility for 4 experiment sites in FCC-ee
- All sites close to road infrastructures (< 5 km of new road constructions for all sites)
- Vicinity of several sites to 400 kV grid lines
- Good road connection of PD, PF, PG, PH suggest operation pole around Annecy/LAPP

FCC Long Section – PA31-1.0

John Osborne

plans for high-risk area site investigations

JURA, VUACHE (3 AREAS)

Top of limestone Karstification and filling-in at the tunnel depth Water pressure

LAKE, RHÔNE, ARVE AND USSES VALLEY (4 AREAS) Top of the molasse Quaternary soft grounds, water bearing layers

MANDALLAZ (1 AREAS) Water pressure at the tunnel level Karstification

BORNES (1 AREA) High overburden molasse properties Thrust zones

Site investigations planned for 2024 – 2025: ~40-50 drillings, some 100 km of seismic lines

The e⁺e⁻Future Circular Collider Frank Zimmermann NAPAC22, Albuquerque, 9 August 2022

FUTURE

CIRCULAR

sustainability and carbon footprint studies

highly sustainable Higgs factory

FUTURE

COLLIDER

luminosity vs. electricity consumption

Thanks to twin-aperture magnets, thin-film SRF, efficient RF power sources, top-up injection

optimum usage of excavation material int'l competition "mining the future[®]"

https://indico.cern.ch/event/1001465/

CÉRN

FCC Feasibility Study Status Frank Zimmermann Plenary ECFA Meeting, 22 July 2022

FCC-ee annual energy consumption \sim LHC/HL-LHC

120 GeV	Days	Hours	Power OP	Power Com	Power MD	Power TS	Pov Shute	wer down		
Beam operation	143	3432	293						1005644	MWh
Downtime operation	42	1008	109						110266	MWh
Hardware, Beam commissioning	30	720		139					100079	MWh
MD	20	480			177				85196	MWh
technical stop	10	240				87			20985	MWh
Shutdown	120	2880					6	9	199872	MWh
Energy consumption / year	365	8760							1.52	TWh
Average power									174	MW
JP. Burnet, FCC Week 2022			CER	N Meyrin,	SPS, FCC		Z	W	Н	TT
		Bear	m energy (GeV)		45.6	80	120	182.5	
incl. CERN site & SPS			Enei	rgy consun	nption (TWF	n/y)	1.82	1.92	2.09	2.54

powered by mix of renewable & other C-free sources

120

Dow

MD

Shut

Aver

https://www.carbonbrief.ora/

CIRCULAR SUSTAINABILITY COMPARED with other Higgs factories

TWh / year for the "Higgs factory" centre-of-mass energy

 \sqrt{s} = 240 GeV for CEPC/FCC-ee, 250 GeV for ILC/C³, 380 GeV for CLIC

Patrick Janot

https://indico.cern.ch/event/1178975/

CLIC	ILC	C ³	FCC-ee	CEPC
0.8	0.9	0.9	1.1	2.0

Energy consumption in MWh / Higgs

CLIC	ILC	C ³	CEPC	FCC-ee	becomes 2 MWh / Higo
30	20	21	10	3.3 🗸	for FCC-ee with 4 IPs

Present carbon footprint for electrical energy in tons CO_2 / Higgs

CLIC@CERN	ILC@KEK	C ³ @FNAL	CEPC@China	FCC-ee@CERN
2.1	7.8	8.5	6.1	, 0.24

0.14 ton CO_2 / Higgs for FCC-ee with 4 IPs

future upgrades and uses

- FCC-ee: not only Higgs, but Z and W factory (TeraZ); tt upgrade (~1 BCH^{F)}.
- optional direct s-channel Higgs production at 125 GeV with monochromatization

FUTURE

- civil construction & technical infrastructures shared with [and prepare] 100 TeV hadron collider FCC -hh – stage 2 of FCC integrated program (next slide)
- numerous other possible extensions (ep/eA/AA, Gamma Factory, LEMMA-type m collider FCCmm ? ..., ERL upgrade ? ...)

A. Faus-Golfe et al., Eur. Phys. J. Plus, 137 (2022) 31

F. Zimmermann et al., PAC'22, Bangkok, WEPOST009

preparing for FCC stage 2 (FCC-hh) CIRCULAR COLLIDER

In parallel to FCC studies,

FUTURE

High Field Magnet development program as long-term separate R&D project

CERN budget for high-field magnets doubled in 2020 Medium-Term Plan (~ 200 MCHF over ten vears)

Main R&D activities:

- □ materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices,

industrialisation and costs

□ infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

Detailed deliverables and timescale being defined through Accelerator R&D roadmap under development

L. Bottura, F. Gianotti, A. Siemko

FCC Feasibility Study (FS)

2013 ESPPU requested FCC Conceptual Design fourvolume report \rightarrow 4 volumes delivered in 2018/19, describing the physics cases, the design of the lepton and hadron colliders, and the underpinning technologies and infrastructures. Fol-

2020 ESPPU \rightarrow 2021 Launch of FCC Feasibility Study (FCC FS) by CERN Council

- Feasibility Study Report (FSR) expected by the end of 2025, not only the technical design, but also numerous other key feasibility aspects, including tunnel construction, financing, and environment
- FSR will be an important input to the next ESPPU expected in 2026/27.

FCC FS is organized as an international collaboration. The FCC FS and a possible future project will profit from CERN's decadelong experience with successful large international accelerator projects, e.g., the LHC and HL-LHC, and the associated global experiments, such as ATLAS and CMS.

<u>http://cds.cern.ch/record/2774006/files/Eng</u> <u>lish.pdf</u>

Main Deliverables and Timeline of the FCC Feasibility Study

<u>http://cds.cern.ch/record/2774007/files/Enq</u> <u>lish.pdf</u>

Strategy for Particle Physics updated by the CERN Council in June 2020. It reflects discussi at, and feedback received from, the Council in March 2021 and is now submitted for the latte

of this study will be summarised in a Feasibility Study Report to

FUTURE

Post FS & ESPPU2027: Project Cost & Profile

Construction cost estimate for FCC-ee

(from CDR 2018, update in 2025)

FUTURE

- Machine configurations for Z, W, H working points included
- Baseline configuration with 2 detectors
- CERN contribution to 2 experiments incl.

cost category		%
civil engineering	5.400	50
technical infrastructure	2.000	18
accelerator	3.300	30
detector	200	2
total cost (2018 prices)	10.900	100

Spending profile for FCC-ee

- CE construction 2032 2040
- Technical infrastructure 2037 2043
- Accelerator and experiment 2032 2045
- Commissioning and operation start 2045 -2048.

Status of Global FCC Collaboration

H2020

Increasing international collaboration as a prerequisite for success:

FUTURE CIRCUL

RI

Companies

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

Countries

FCC Feasibility Study: 58 fully-signed previous members, 17 new members Mol L renewal of remaining CDR participants in progress

Outlook

Comprehensive R&D program and implementation preparation is presently being carried out in the frameworks of FCC FS, the EU co-financed FCC Innovation Study, the Swiss CHART program, and the CERN High-Field Magnet Programme. Goal: demonstrate FCC feasibility by 2025/26

Plenty of opportunities for collaborations *(incl. FCC-EIC, Belle II,...) and for* **joint innovative developments** *with US partners !*

The **first stage of FCC could be approved within a few years after the 2027 European Strategy Update**, *if the latter is supportive*. **Tunnel construction could then start in the early 2030s** *and* **FCC-ee physics program begin in the second half of the 2040s**, *a few years after the completion of the HL-LHC physics runs expected by 2041*.

Long term goal: world-leading HEP infrastructure for 21st century to push particle-physics precision and energy frontiers far beyond present limits

FCC WEEK

2023

5 – 9 June