

Studies of Ion Instability Using a Gas Injection System

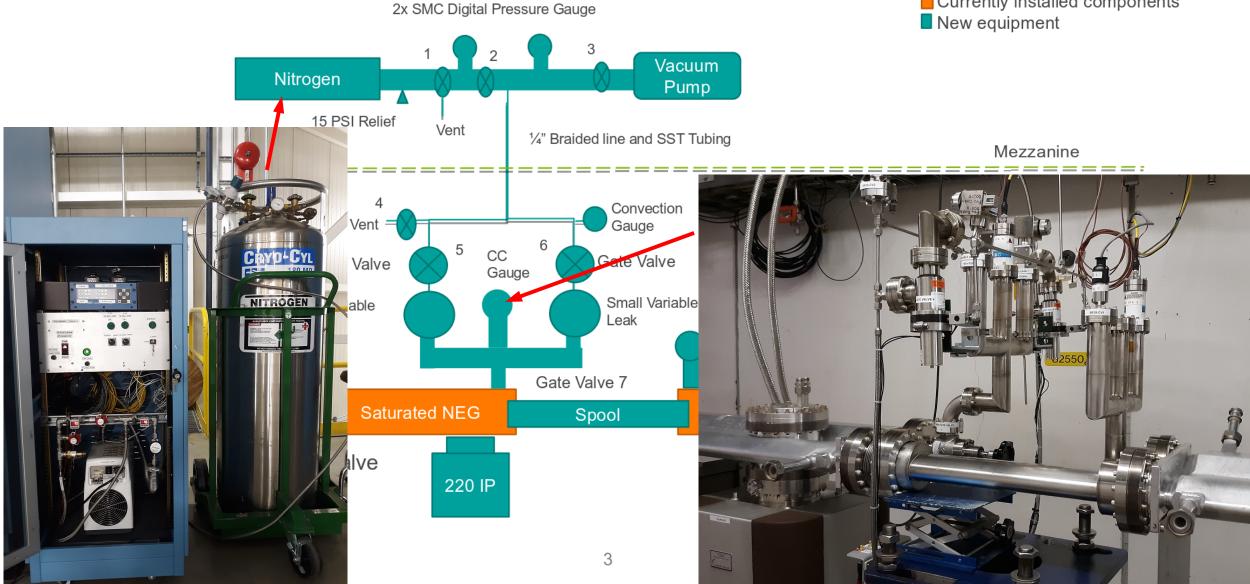
J. Calvey, M. Borland, L. Emery, P.S. Kallakuri

2022 North American Accelerator Conference August 9th, 2022

Introduction

- Ion trapping occurs when a negatively charged beam ionizes residual gas inside the vacuum chamber.
- Trapped ions can couple to the beam motion, leading to a coherent (usually vertical) instability. They can also cause incoherent effects, such as emittance growth.
- Renewed interest for next generation light sources (e.g. APS-U¹) due to challenging emittance and stability requirements.
- To study ion instability at the present APS, we built a gas injection system²:
 - Creates localized pressure bump of N₂ gas: 100 or 900 nTorr
 - Installed at 2 locations: Sector 25 (S25) and Sector 35 (S35)
 - Bump confined to 6 10 m with ion pumps
 - Data taken under a wide variety of beam conditions
 - Measurements: pinhole camera, spectrum analyzer, bunch-by-bunch feedback system

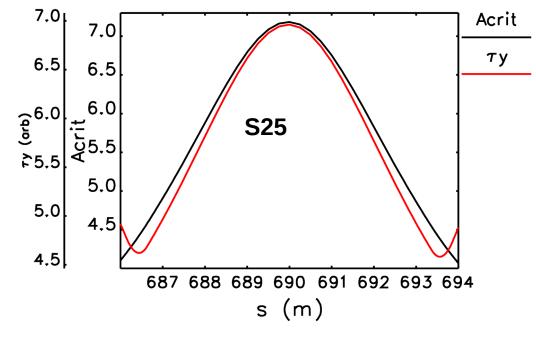
[1] R. O. Hettel, Proc. IPAC'21, pp. 7-12.[2] J. Calvey, Proc. IBIC'20, pp. 258-262.

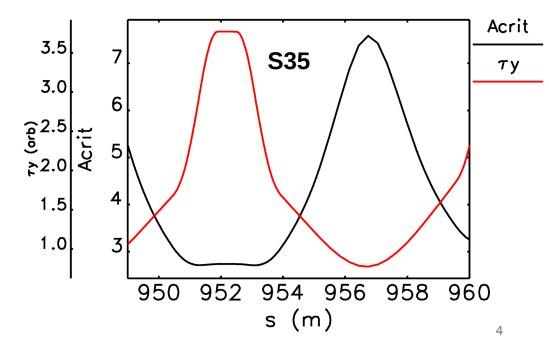


INSTALLATION CONFIGURATION

WITH 2 CALIBRATED VARIABLE LEAKS

J. Hoyt, T. Clute


Currently installed components New equipment



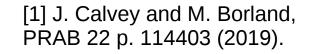
Comparison of S25 and S35

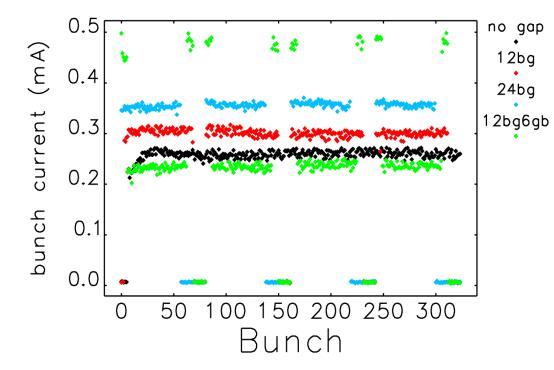
- Lattice functions very different at two locations
- Compare two parameters:
 - Critical mass¹: lower $A_{crit} \rightarrow$ more trapping
 - Vertical growth time parameter: lower τ_v → faster initial growth
- S35 has lower $A_{_{crit}}$ and $\tau_{_y} \rightarrow$ stronger instability
- S25: two parameters highly correlated
- S35: anti-correlated: locations with the most trapping have the slowest initial growth

$$A_{x,y} = \frac{N_e r_p S_b Q}{2\sigma_{x,y}(\sigma_x + \sigma_y)}$$

$$\tau_y \equiv 10^{10} \sigma_y(\sigma_x + \sigma_y) / \beta_y$$

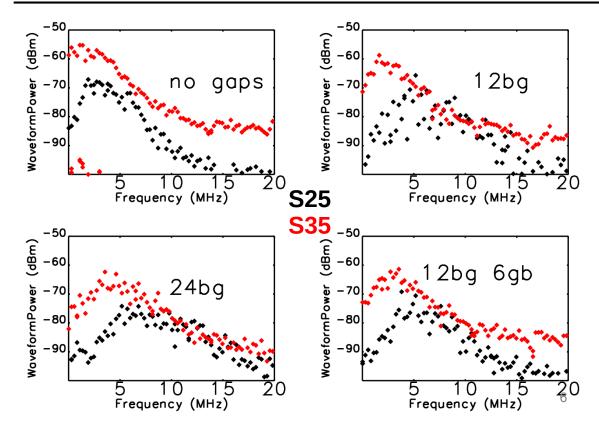
[1] H.G. Hereward, CERN 71-15 (1971).





Train gap studies

- Measure instability for four bunch patterns:
 - 1 train, no gaps (324 bunches)
 - 12bg: 4 trains, 12 bunch gaps
 - 24bg: 4 trains, 24 bunch gap
 - 12bg 6gb: 4 trains, 12 bunch gap,
 6 double-charge guard bunches¹
- Bunch charge adjusted to give
 ~80 mA total current
- Took data for 900 and 100 nTorr bump
- Done for S25 and S35


Quantity	Value	
Beam energy	6 GeV	
Horizontal, vertical emittance	1.83 nm, 24 pm	
Revolution time	3.68 µs	
Beam current	~80 mA	
Bunches (no gaps)	324	
Bunch spacing	11 ns	
horizontal, vertical chromaticity	~6,~3 ₅	

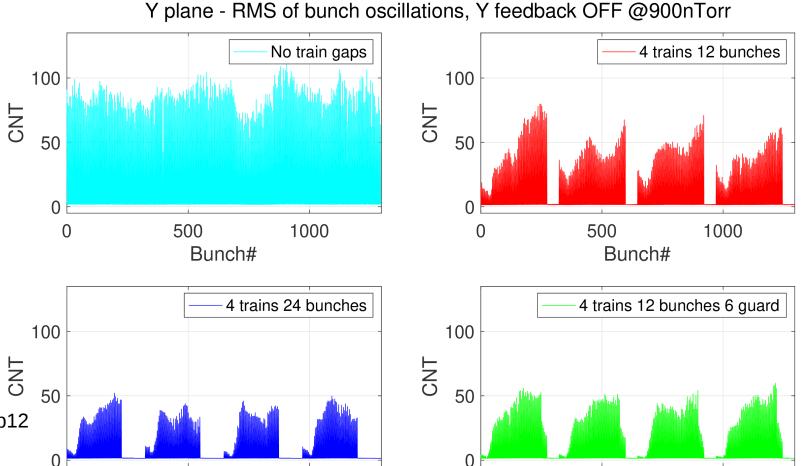
Train gap results: 900 nTorr

- Top: measured emittance
- Bottom: beam spectrum (lower vertical betatron sidebands)
- S35 has much larger vertical blowup and instability amplitude than S25
- S25 no gap case also has horizontal instability
- Ion frequencies (peak of spectrum) lower than expected- beam size blowup
- Train gaps reduce blowup and instability amplitude, increase ion frequency
- 12bg 6gb performs better than 12bg, about the same as 24bg

pattern	S25	S35	S25	S35
	ϵ_x (nm)	ϵ_x (nm)	ϵ_y (nm)	ϵ_y (nm)
No gap	3.6	1.98	0.124	1.55
12bg	2.06	1.83	0.049	0.188
12bg 6gb	2.05	1.78	0.031	0.043
24bg	2.09	1.77	0.027	0.051

Bunch by bunch RMS motion (900 nTorr, S35)

500


Bunch#

1000

- Measured by Dimtel feedback system¹
- Buildup along bunch trains- fast ion instability²

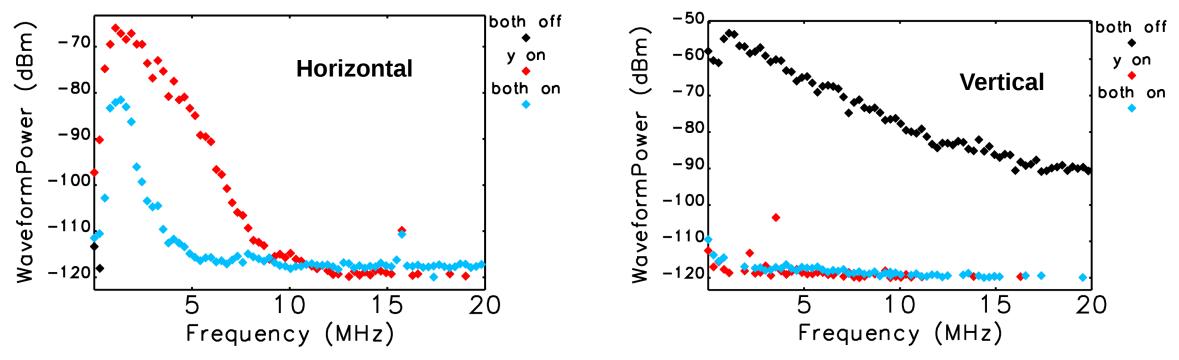
0

- First few bunches higher than following ones.
- Guard bunches have less motion
- Train gaps are effective

500

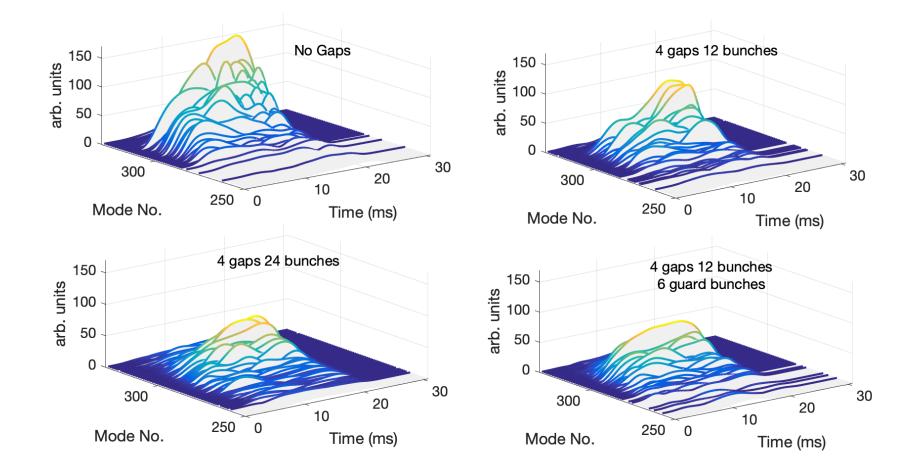
Bunch#

0


1000

[1] https://www.dimtel.com/products/igp12[2] J. Byrd et al., Phys. Rev. Lett. 79, pp. 79-82 (1997).

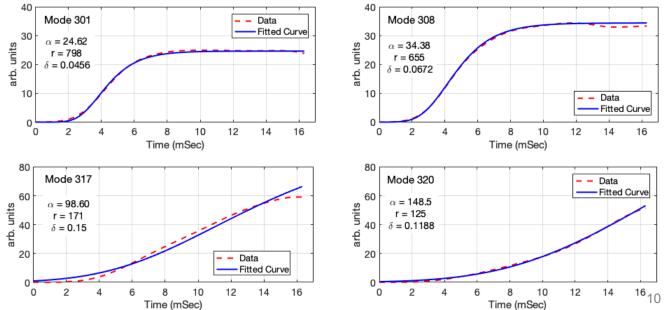
Transverse feedback (900 nTorr, no gaps, S35)


- Dimtel system is used to measure and suppress transverse instabilities.
- Vertical feedback extremely effective, but leads to horizontal instability
- Vertical instability damped \rightarrow more ion trapping \rightarrow horizontal instability
- With feedback on in both planes, still have (small) horizontal instability
 - NB: one of the horizontal amplifiers was broken

Grow-damp measurements (Dimtel system)

- Feedback disabled at 0 ms, re-enabled at 20 ms
- Study instability on a mode-by-mode basis
- Complex mode behavior after initial saturation

Mode amplitudes - Grow damp measurements @900 nTorr

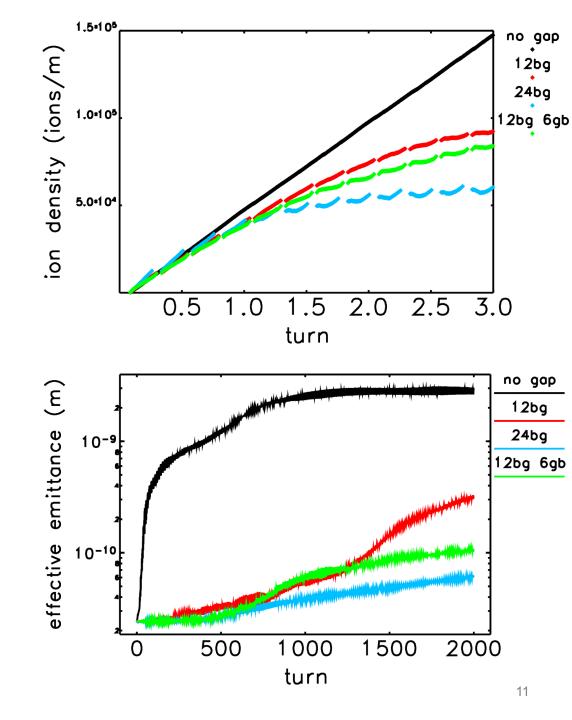

Characterizing growth and saturation

- Initial growth and saturation can be modeled by logistic function
- Saturation level given by $\boldsymbol{\alpha}$
- Time of inflection point: $t_i \equiv -\ln(\delta)/r$

$$y(t) = \frac{\alpha}{(1+e^{-rt})^{1/\delta}}$$

- Higher amplitude modes have slower growth time
- Recall anti-correlation between growth rate and trapping in S35
- Modes with the highest amplitude are driven by locations with the most ion trapping, rather than the fastest initial growth.

mode	freq (MHz)	α	<i>t_i</i> (ms)
301	6.2	24.6	3.9
308	4.3	34.4	4.1
317	1.9	98.6	11.1
320	1.1	148.5	17.0



Simulations (900 nTorr, S35)

- Particle tracking simulations done with IONEFFECTS element in elegant^{1,2}
- Includes transverse impedance, multiple ionization, actual measured bunch pattern³
- Bi-Gaussian kick method⁴
- Clearing effect from train gaps clearly seen
- Non-monotonic growth along bunch trains
- Effective vertical emittance (beam size and rms motion added in quadrature)
 - Simulations overestimate by up to factor of 2
 - Show effectiveness of train gaps, especially guard bunches

[1] M. Borland, Rep. LS-287, APS, Sep. 2000.
[2] Y. Wang and M. Borland, Proc. AAC 877, p. 241, 2006.
[3] J. Calvey and M. Borland, PRAB 24, p. 124401, 2021.
[4] J. Calvey et al., Proc. IPAC'21 pp. 1267–1272.

Conclusions

- A gas injection system has been installed and used to study ion instability, at two different locations in the APS ring.
- Train gaps are effective at mitigating the instability. Guard bunches help with the ion clearing.
- Dimtel transverse feedback can effectively damp the instability in both planes simultaneously.
- Grow-damp measurements have been performed, and used to study the growth of the instability on a mode-by-mode basis.
- Strongest modes are driven by locations with the most ion trapping
- IONEFFECTS simulations using a bi-Gaussian kick method show qualitative agreement with the measurements.
- Work is underway to implement a Poisson solver in the code, and to perform simulations using a model of the transverse feedback.

