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Object Oriented Parallel Particle Library (OPAL)

https://gitlab.psi.ch/OPAL/src/wikis/home

OPAL is a versatile open-source tool for charged-particle optics in
large accelerator structures and beam lines including 3D EM field
calculation, collisions, radiation, particle-matter interaction, and
multi-objective optimisation

OPAL is built from the ground up as an HPC application

OPAL runs on your laptop as well as on the largest HPC clusters

OPAL uses the MAD language with extensions

OPAL is written in C++, uses design patterns, easy to extend

The OPAL Discussion Forum:
https://psilists.ethz.ch/sympa/info/opal

International team of 11 active developers and a user base of O(100)

The OPAL sampler command can generate labeled data sets using
the largest computing resources and allocations available



The Active OPAL Developer Team



The Need for a Full EM Solver

AWA Wiggler Experiment
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To the best of our knowledge, there are currently no single particle-tracking
codes that can model this beamline start-to-end.

Spoiler: OPAL can now do it!

OPAL electrostatic solver:
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Adelmann et al. (2019), DOI:10.48550/ARXIV.1905.06654
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Modeling Electrons in Undulators and Wigglers

Solving full Maxwell equations is hard because:

▶ We have space charge and radiation that affects all particles,

▶ Hyperbolic PDE (stability issues, dispersion, huge computational
demand...),

▶ Often simplifications are required (electrostatic, 1D wakefields, ...).

Table: Common approximations in modeling free electron laser radiation.

code name

approximation

steady state wiggler-average slow wave forward
no space-charge slice

approximation electron motion approximation wave

GENESIS 1.3 optional ✓ ✓ ✓ — optional

MEDUSA optional — ✓ ✓ — ✓

TDA3D ✓ ✓ ✓ ✓ — no time-domain

GINGER — ✓ ✓ ✓ — —

PERSEO — — — ✓ ✓ —

CHIMERA — — — ✓ — —

EURA — ✓ ✓ ✓ — —

FAST — ✓ ✓ — — ✓

PUFFIN — — — ✓ ✓ —

A. Fallahi et al. (2018), DOI:10.1016/j.cpc.2018.03.011
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Mithra: Full EM Solver from First-Principles

Maxwell equations rearranged into wave equations:
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,
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∂t
,

∇ ·B = 0,

∇ ∧B = µ0j +
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,

⇒


∇2A− 1

c2
∂2A

∂t2
= −µ0j,

∇2ϕ− 1

c2
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(1)

Integrate wave equations with non-standard FDTD, in co-moving frame.

A. Fallahi et al. (2018), DOI:10.1016/j.cpc.2018.03.011
J.-L. Vay (2007), DOI: 10.1103/PhysRevLett.98.130405
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OPAL-FEL: start-to-end simulation of undulator-based
facilities

OPAL-FEL = OPAL static solver + additional full EM solver based on MITHRA

To the best of our knowledge, there are no single particle-tracking
codes that can do start-to-end tracking of accelerators including
wigglers/undulators.
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Benchmarking OPAL-FEL: LCLS Experiment

Experiment at LCLS tested wiggler effects in radiation dominated regime.
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J. P. MacArthur et al. (2019), DOI:10.1103/PhysRevLett.123.214801
A. Albà et al. (2022), DOI:10.1016/j.cpc.2022.108475 9 / 11



The AWA POP Experiment

Testing wiggler effects in space charge dominated regime.
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https://www.sciencedirect.com/science/article/pii/S0010465522001941


Summary and Outlook

▶ OPAL can simulate start-to-end beamlines with undulators,

▶ Benchmarked in radiation dominated regime (LCLS 3.95 GeV) and
space charge dominated regime (AWA 45 MeV),

▶ Optimal use of computational resources combining electrostatic with
full EM solver in different parts of beamline.

What’s next (potentially):

▶ Modeling full FELs,

▶ First-principle simulation of cooling schemes that use wigglers.

Questions?
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Backup Slides: Experiment Parameters

LCLS AWA

Lw 2.10 m 1.1 m
Kw 51.5 10.81
Nw 6 10
λw 35 cm 8.5 cm
Q 200 pC 300 pC

mean E 3.95 GeV 45.5 MeV
σz 4.75 µm 250 µm
σx,y 74 µm 400 µm
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Backup Slides: OPAL Electrostatic Solver
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Gather fields
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Figure: Schematic of OPAL’s static solver.
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Backup Slides: OPAL-FEL Full EM Solver
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Figure: Schematic of OPAL-FEL’s full-wave solver.
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Backup Slides: Space Decomposition and Load Balancing
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Figure: Parallelization schemes used by OPAL’s solvers. The blue ellipse is the
bunch, and in this example four processors share the computational load. The
static solver (left) adapts the grid to tightly surround the bunch, and equally
shares the number of particles among processors. The full-wave solver
MITHRA (right) cannot resize the grid, and equally shares the number of cells
among processors.
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Backup Slides: Undulator in Co-moving Frame

Figure: By doing the entire simulation in the co-moving frame, the bunch
length, undulator period, and radiation wavelength become of comparable size.
Then the computational grid can be smaller and coarser, than when solving in
the lab frame.

A. Fallahi et al. (2018), DOI:10.1016/j.cpc.2018.03.011
J.-L. Vay (2007), DOI: 10.1103/PhysRevLett.98.130405
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