

Thermionic Sources for Electron Cooling at IOTA

MaryKate Bossard*, Nilanjan Banerjee*, John Brandt*, Young-Kee Kim*, Meghan Krieg*, Brandon Cathey**, Sergei Nagaitsev**, Giulio Stancari**.

*University of Chicago, *St. Olaf College, **Fermilab

Overview

- IOTA at Fermilab
- Electron Lens
- Electron Cooling
- Thermionic Sources for Cooling
- Electron Source Test Stand
- Conclusions

IOTA at Fermilab

- Integrable Optics Test Accelerator (IOTA)
- Easily re-configurable 40 m storage ring.
- Test facility dedicated to research on intense beams:
 - Nonlinear Integrable Optics (NIO) <u>Experimental</u> Studies of Nonlinear Integrable Optics, N. Kuklev
 - space-charge
 - beam cooling <u>J. Jarvis (FNAL) FRXD1</u>
 - Single electron storage A. L. Romanov (FNAL) TUZE1
- Circulates both electrons and protons.
 - Focus: Circulating 2.5 MeV protons to investigate intense space-charge regime

С	KE	T _{nev}	h	N _{bunch}	$v_{x,y}$
39.96 m	2.5 MeV	1.83 μs	4	Coasting or 4	4.117, 3.632

Electron Lens

Electron Lens:

- Low-energy, magnetically confined electron beam
- Overlap with circulating beam
 - Field from the electrons can shape the phase space structure of the beam
 - Magnetic field in beam overlap enhances stability of two-beam system

Electron Lens at IOTA:

- Nonlinear element to create integrable lattices McMillan Lens: B. Cathey MOPA17
- Electron cooler for experiments with proton beams requiring range of lifetimes, emittances, and brightness

Electron Cooling at IOTA

- Electron cooling: Ion beam exchanges thermal energy with a co-propagating electron beam.
- Goals at IOTA:
 - Counter emittance growth in 2.5MeV proton beam and other beam manipulations
 - Explore cooling in intense space-charge regime.
 - Study interplay between wakefields, space charge and electron cooling. <u>A. Burov, Phys. Rev. Accel. Beams 22,</u> 034202, 2019
- Need two coolers:
 - Simple Electron Source:Cooling the Proton beam at IOTA. Tool for other experiments at IOTA.
 - Strong Electron Source: Studying effects of electron cooling in ion beams with intense space-charge.

S. Nagaitsev et al., Proceedings Particle Accelerator Conference, 1995, pp. 2937-2939

Electron Sources

- Thermionic Emission: Cathode heated by filament, supplying thermal energy to electrons
 - Emission occurs when electrons overcome work function of cathode surface (Temp near 1400K)
- Collimated beam: electrons perform cyclotron motion in high B-field line.
- Sources for IOTA:
 - Similar to others developed at Fermilab
 - B-field of both source and main solenoid: 0.1 T.

Focus Electrode
Cathode
Anode

Basic Electron Source Design

- Same B-field at both source and cooler:
 - same beam parameters at the source.
- Simulations in TRAK <u>"Trak Charged Particle Toolkit," Field</u>
 Precision LLC, 2022.
- Specifications for Electron beam at the cooler:
 - Beam energy: 1.36 KeV
 - Cathode φ: 40 mm
 - B-field: 0.1 T
 - Current: 1 mA
 - Flat beam distribution
- in process of designing strong source

100

Beam Density [J]

Radial Beam Distribution

15

I = 90 mA

25

Test Stand for Thermionic Sources

- Constructing test stand at the University of Chicago
- Test stand goals to validate electron source operations:
 - Vacuum performance
 - Thermal performance
 - Beam current
 - Beam distribution

Test Stand Diagnostics

Cathode Temperature Measurement

- Algorithm to measure temperature of cathode in the test stand.
- Yag Screen
 - beam distribution measurement
- Faraday Plate
 - Beam current measurement

Kent Wootton, et al. Proceedings 8th International Beam Instrumentation Conference, 2020, DOI:

10.18429/JACoW-IBIC2019-TUPP039

Intensity data from

camera (RGB)

Test Stand Diagnostics

- Vacuum Measurement
- Residual Gas Analyzer
 - mass spectrometer
- Mounts for cameras
- For analyzing the data:
 - User Interface Node Red
 - Will use to communicate with hardware and store data

Conclusions

- Electron Cooling can improve beam quality for hadron beams.
- IOTA will use electron cooling for research towards how cooling interacts with high space-charge and instabilities.
- We are designing two electron sources for cooling:
 - Proton beam cooling
 - Strong space-charge regime research
- Developing test stand to analyze these and other electron sources
- Next steps:
 - bake-out of test stand
 - develop optimization method for electron source electrode design

Acknowledgements

Thank you to everyone at the University of Chicago, Fermilab, and the **IOTA/FAST Collaboration!**

Thank you!

Questions: mbossard@uchicago.edu

Appendix

Table 1: Typical Operation Parameters for Protons in IOTA

Parameter	Value		Unit
Circumference (C)	39.96		m
Kinetic energy (K_b)	2.5		MeV
Emittances $(\epsilon_{x,y})$	4.3, 3.0		μ m
Momentum spread	1.32×10^{-3}		
(σ_p/p)	Coasting	Bunched	
Number of bunches	-	4	
Bunch length (σ_s)	-	0.79	m
Beam current (I_b)	6.25	1.24	mA
Bunch charge (q_b)	11.4	0.565	nC
Tune shifts $(\Delta v_{x,y})$	-0.38, -0.50		
$ au_{\mathrm{IBS},\mathrm{x},\mathrm{y},\mathrm{z}}$	6.4, 4.2, 8.1	8.7, 6.0, 23	S

Table 2: Electron Cooler Parameters for IOTA

Parameter	Va	lues	Unit
Pro	ton paramete	ers	
RMS Size $(\sigma_{b,x,y})$	3.22, 2.71		mm
	olenoid parai	neters	
Magnetic field (B_{\parallel})	0.1 - 0.5		T
Length (l_{cooler})	0.7		m
Flatness $(\langle B_{\perp} \rangle / B_{\parallel})$	2×10^{-4}		
Elec	tron paramet	ters	
Kinetic energy (K_e)	1	keV	
Temporal Profile	1		
Transverse Profile	F		
Source temp. (T_{cath})	1400		K
Current (I _e)	1	40	mA
Radius (a)	20	12	mm
$ au_{\mathrm{cool},x,y,s}$	37, 33, 18	3.4, 3.2, 1.7	S

Appendix

- Our system will enable study of magnetized electron cooling of proton beam with transverse incoherent space charge tune shifts approaching -0.5.
- e-cooling min beam size: corresponds to transverse space-charge tune shifts of 0.1-0.2.
- Setup capable of exploring dynamics due to space-charge in the regime of large transverse tune shifts up to $\Delta vx, y = -0.5$.
- Electron beam size is chosen to effectively cool at least 3σ of the transverse proton beam size.
- Maximum current of the cooler: the velocity depression at center of the electron beam due to space-charge forces is of the same order as the standard deviation of the velocity distribution of the ion beam.

Appendix

- Proton beam diagnostics: beam position monitors and a DC current transformer.
- The simple cooler configuration: low current regime, where space-charge tune shifts of the ions are less than 0.1 and IBS is the major driver of emittance growth.
- The strong cooler configuration is designed to cool proton beams where the transverse space-charge tune shift is more than 0.1.