Ultrafast Electron Diffraction with Low Emittance Photocathodes

Jared Maxson, Cornell University

BRIGHT

U.S. DEPARTMENT OF

CLASSE

Office of

Science

Introduction to UED: The need for brightness

We want a small transverse probe size \rightarrow some samples are hard to make with large dimensions We want a small transverse momentum spread \rightarrow need high coherence to see small features in k-space We want a short bunch duration \rightarrow natural timescale for atomic motion is fs-ps We want as many electrons as possible \rightarrow large signal to noise for subtle diffraction features

High source brightness is critical for UED!

Introduction to UED: The need for brightness

We want a small transverse probe size \rightarrow some samples are hard to make with large dimensions We want a small transverse momentum spread \rightarrow need high coherence to see small features in k-space We want a short bunch duration \rightarrow natural timescale for atomic motion is fs-ps We want as many electrons as possible \rightarrow large signal to noise for subtle diffraction features

High source brightness is critical for UED!

Much previous UED work

Introduction to UED: The need for brightness

Our device focuses on these

We want **a small transverse probe size** \rightarrow some samples are hard to make with large dimensions We want a **small transverse momentum spread** \rightarrow need high coherence to see small features in k-space We want a **short bunch duration** \rightarrow natural timescale for atomic motion is fs-ps We want as **many electrons as possible** \rightarrow large signal to noise for subtle diffraction features

High source brightness is critical for UED!

Much previous UED work

We focus on transverse probe size and coherence, (hence the name)

Not just about Bragg Peaks

The need for small probe sizes

Preparing large films of quantum materials for UED can be challenging. Example: Nb_3Br_8 thin film flakes, exhibits periodic lattice distortion

The rich k-space means that one cannot merely focus strongly- need small divergence too.

• Overlapping two monolayers with a small twist can yield remarkable new materials physics: moire materials.

• Overlapping two monolayers with a small twist can yield remarkable new materials physics: moire materials.

MoSe₂ monolayer

Real space simulation

Samples prepared @ Stanford by Fang Liu and Helen Zeng

 Overlapping two monolayers with a small twist can yield remarkable new materials physics: moire materials.

Samples prepared @ Stanford by Fang Liu and Helen Zeng

 Overlapping two monolayers with a small twist can yield remarkable new materials physics: moire materials.

Samples prepared @ Stanford by Fang Liu and Helen Zeng

Interesting physics at multiple scales:

First observation of moire atomic reconstruction with any ultrafast probe! Requires very high coherence ($\geq 10 \text{ nm}$ coherence length)

MEDUSA Strategy for source brightness: Seek Low MTE

• MTE is rms transverse photoelectron momentum spread expressed in energy units:

$$\epsilon_{n,cath} = \sigma_{laser} \sqrt{\frac{\text{MTE}}{mc^2}}$$

$$B_{n,max} \propto \frac{E_{acc}^n}{\text{MTE}}$$

where 1 < n < 2 depends on bunch aspect ratio. MTE's of several hundred meV are common (Cu, Cs-Te).

• But does low MTE actually matter when space charge is present? We will get back to this.

Excellent Low MTE Candidate Materials: Alkali Antimonides

- By reducing the excess energy of photoemission, one can trade quantum efficiency for lower MTE.
- Alkali antimonides achieve as low as ~30 meV (shown below: Na-K-Sb, min MTE of 35 meV) with photon energy tuning.
- >10x max. brightness as compared to Cs-Te or polycrystalline Cu in traditional operation.
- Lower QE must be balanced against increased laser energy—ultimate limit is multiphoton photoemission, which spoils low MTE.

Threshold photoemission for low MTE is not a new idea

Dowell and Schmerge, PRSTAB 12, 074201 (2009) See also: J. Feng, APL 107, 134101 (2015)

M. Aidelsburger, PNAS 107 46 (2010).

But even very low MTE values remain useful

MOGA optimization: MEDUSA Beamline. DC Gun (140 kV) + RF buncher, 100,000 e/bunch (space charge very much not negligible)

Lower MTE provides access to:

Smaller bunch length for a given emittance, or vice versa

An important effect even below 100 meV MTEs

We regularly measure emittances of 12-14 nm depending on transverse optics, and bunch length between 100-200 fs rms.

Infer MTE significantly less <100 meV

Cartoon of MEDUSA: The critical components

Our device: piece by piece.

High brightness, semiconductor electron source (Na-K-Sb)

650 nm photo-emission wavelengths matches the cathode bandgap

50 W @ 250 kHz, 1030 nm Yb fiber laser (AS Tangerine) feeds optical parametric amplifier (AS Mango)

Source is extremely vacuum sensitive (XHV)

150 kV DC gun

Base pressure: 8×10^{-12} Torr

3 GHz bunching cavity

Long pulse length at cathode: ~10 ps

Bunching after acceleration mitigates space-charge

~100 fs rms bunchlength at sample

Sample chamber

Pressure 10⁴ × higher than gun

515 nm pump pulses, second-harmonic of Tangerine

(future upgrade: Visble and NIR OPA)

Thanks to Lena Kourkoutis and Elisabeth Bianco for providing the $Nb_{3}Br_{8}$ sample

The UED Laser system: "Much ado about the photocathode drive laser"

Sample chamber

Pressure $10^4 \times higher$ than gun (UHV)

Direct Electron Detector (EMPAD) deployed in collab. with Gruner/Thom/Muller

Quad triplet postsample not shown

Bunch length measurements: compact RF deflector cavity

3 GHz insertable deflection cavity manufactured by Dr. X. Works, Eindhoven.

Drops in just upstream of sample location

Looking through laser entrance window Note 1" light optics for scale

Bunch length measurements: compact RF deflector cavity

3 GHz insertable deflection cavity manufactured by Dr. X. Works, Eindhoven.

Drops in just upstream of sample location

Looking through laser entrance window Note 1" light optics for scale

Mounting Pole Cavity

Aberrations: an important obstacle

• Our microdiffraction optics rely on large changes in beam size:

- This leaves us very vulnerable to field aberrations.
- We have dedicated correction magnets for quadrupole, skew quadrupole, and sextupole moments.

Aberrations: Normal and Skew Quadrupole

• Erroneous quads are found in our solenoids *and* due to the coupler kick of the bunching cavity where beam size is large.

Lines: simulation, dots: measurement

- We use quadrupole correctors just downstream of our second solenoid → as previously demonstrated [L. Zheng, PRAB 22, 072805 (2019)] very effective in removing transverse coupling.
- Sextupole moment primarily arises from buncher coupler
- Once we do that, our beam looked like this on our diffraction detector:

- We use quadrupole correctors just downstream of our second solenoid → as previously demonstrated [L. Zheng, PRAB 22, 072805 (2019)] very effective in removing transverse coupling.
- Sextupole moment primarily arises from buncher coupler
- Once we do that, our beam looked like this on our diffraction detector:

- We use quadrupole correctors just downstream of our second solenoid → as previously demonstrated [L. Zheng, PRAB 22, 072805 (2019)] very effective in removing transverse coupling.
- Sextupole moment primarily arises from buncher coupler
- Once we do that, our beam looked like this on our diffraction detector:

- We use quadrupole correctors just downstream of our second solenoid → as previously demonstrated [L. Zheng, PRAB 22, 072805 (2019)] very effective in removing transverse coupling.
- Sextupole moment primarily arises from buncher coupler
- Once we do that, our beam looked like this on our diffraction detector:

4D Phase Space Measurements

• We use 4D transverse phase space mapping to ensure cancellation of skew quadrupoles and sextupole moment

Critical Step Forward: Direct Electron Detection

- Brightness in UED is only as good as your detector.
- A direct electron detector called the EMPAD, has been a huge step forward for MEDUSA. Collab with Gruner, Thom-Levy, and Muller at Cornell.
- Single Particle sensitivity (SNR ~100 per electron), and very high dynamic range (10⁶)
- Images up to **1000 frames/second** → outrun noise!

To Conclude: Some examples of what you can do with a UED microprobe

Commissioning UED experiment *Mosaic gold film,* ~ 20 nm thin

Why gold?

Responds strongly to temperature changes that are small compared to the melting point, 100 K vs 1300 K

We can pick out individual grains of a mosaic material

We can make our pump beam very small! (10 micron rms)

→ Reduces average power needed for pumping!

- With a high rep-rate laser *and detector* need both, you can use pulse-picking to extend UED delays out to microsecond-millisecond-second timescales.
- This allowed us to watch the full "life cycle" of optical excitation in thin films.
- Example 1: Monolayer MoSe₂ atop SiN

Step 1: light absorption and e-ph scattering, few ps

- With a high rep-rate laser *and detector* need both, you can use pulse-picking to extend UED delays out to microsecond-millisecond-second timescales.
- This allowed us to watch the full "life cycle" of optical excitation in thin films.
- Example 1: Monolayer MoSe₂ atop SiN

Step 1: light absorption and e-ph scattering, few ps

- With a high rep-rate laser *and detector* need both, you can use pulse-picking to extend UED delays out to microsecond-millisecond-second timescales.
- This allowed us to watch the full "life cycle" of optical excitation in thin films.
- Example 1: Monolayer MoSe₂ atop SiN

Step 2: Longitudinal heat transfer to SiN (100s of ps)

- Example 2: Monolayer **WSe₂/MoSe₂ moire bilayers** atop SiN
- We use pulse picking, small spot sizes, and high rep rate to track heat transfer out to millisecond timescales, and 10s of microns in space.

Conclusions

- Operating alkali antimonides at threshold gave us dramatic improvement in beam quality in UED.
- Diagnosis and correction of aberrations out to sextupole order was critical.
- Transversely small, coherent ultrafast electron probes are very useful, particularly for UED on quantum materials.
- Our electron source, coupled with a state-of-the-art direct electron detector, enabled a novel study of moire materials.

Papers this talk draws from:

- W. H. Li et al., Structural Dynamics 9, 024302 (2022)
- M. Gordon et al., PRAB, Accepted (2022) [https://arxiv.org/abs/2207.13634]
- C.J. R. Duncan et al., in review [https://arxiv.org/abs/2207.13634]

Thank you!