JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Ahmed, S.A. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - HFSS Enables Multipaction Analysis of High Power RF/Microwave Components J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - The radiofrequency (RF) components in particle accelerators operated under a vacuum and driven by high RF power may be prone to electron multipaction ’ an RF triggered electron resonance phenomenon causing malfunction or complete breakdown. Therefore, exploring the design challenges of vacuum RF windows, cavities, and other devices for the electron multipaction becomes necessary. Setting up an experiment to mitigate the failure of RF devices is expensive and time-consuming, which may cause a significant delay in the project. Therefore, a high-fidelity computer simulation modeling the arbitrary geometry and tracking the particles (electrons) in a complex electromagnetic environment is desirable. Ansys HFSS through Finite Element Mesh (FEM) for the full-wave RF simulation combined with the particle-in-cell (PIC) technique for tracking particles in EM fields; enables the engineers/physicist successful prediction of system failure against the electron multipaction. This paper will demonstrate the workflow of the HFSS multipaction analysis. PB - JACoW Publishing CP - Geneva, Switzerland SP - 176 EP - 178 KW - multipactoring KW - electron KW - simulation KW - cavity KW - vacuum DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-MOPA60 UR - https://jacow.org/napac2022/papers/mopa60.pdf ER -