JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
@unpublished{nasr:napac2022-moze1, author = {M.H. Nasr}, title = {{Demonstration of High-Gradient in a Cryo-Cooled X-Band Structure}}, % booktitle = {Proc. NAPAC'22}, booktitle = {Proc. 5th Int. Particle Accel. Conf. (NAPAC'22)}, language = {english}, intype = {presented at the}, series = {International Particle Accelerator Conference}, number = {5}, venue = {Albuquerque, NM, USA}, publisher = {JACoW Publishing, Geneva, Switzerland}, month = {10}, year = {2022}, note = {presented at NAPAC'22 in Albuquerque, NM, USA, unpublished}, abstract = {{We present an experimental demonstration of the high-gradient operation of an X-band, 11.424 GHz, 20-cells linear accelerator (linac) operating at a liquid nitrogen temperature of 77 K. The tested linac was previously processed and tested at room temperature. Low-temperature operation increases the yield strength of the accelerator material and reduces surface resistance, hence a great reduction in cyclic fatigue could be achieved resulting in a large reduction in breakdown rates compared to room- temperature operation. Furthermore, temperature reduction increases the intrinsic quality factor of the accelerating cavities, and consequently, the shunt impedance leading to increased RF-to-beam efficiency and beam loading capabilities. We verified the enhanced accelerating parameters of the tested accelerator at cryogenic temperature using different measurements including electron beam acceleration up to a gradient of 150 MV/m, corresponding to a peak surface electric field of 375 MV/m. We also measured the breakdown rates in the tested structure showing a reduction of 2 orders of magnitude compared to their values at room temperature for the same accelerating gradient.}}, }