JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Lyles, J.T.M. AU - Bratton, R.E. AU - Hall, T.W. AU - Sanchez Barrueta, M. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - RF System Upgrade for Low Energy DTL Cavity at LANSCE J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - The Los Alamos Neutron Science Center (LANSCE) 100-MeV Drift Tube Linac (DTL) uses four accelerating cavities. In May of 2021, a new RF amplifier system was commissioned to drive the first 4-MeV cavity. It had been powered for 30 years with a triode vacuum tube RF amplifier driven by a tetrode, along with four more vacuum tubes for anode high-voltage modulation. The new amplifier system uses one tetrode amplifier driven by a 20-kW solid state amplifier (SSA) to generate 400 kWp at 201.25 MHz. The tetrode amplifier is protected for reflected power from the DTL by a coaxial circulator. The new installation includes cRio controls and a fast protection and monitoring system capable of reacting to faults within 10 µs. A new digital low-level RF (LLRF) system has been installed that integrates I/Q signal processing, PI feedback, and feedforward controls for beam loading compensation. Issues with LLRF stability were initially encountered due to interaction from thermal-related RF phase changes. After these issues were solved, the final outcome has been a reliable new RF system to complete the overall upgrade of the LANSCE DTL RF power plant. PB - JACoW Publishing CP - Geneva, Switzerland SP - 478 EP - 481 KW - controls KW - DTL KW - LLRF KW - cavity KW - MMI DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-TUPA59 UR - https://jacow.org/napac2022/papers/tupa59.pdf ER -