JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for TUPA64: Analysis of Resonant Converter Topology for High-Voltage Modulators

TY  - CONF
AU  - Sanchez Barrueta, M.
AU  - Lyles, J.T.M.
AU  - Morris, M.D.M.
ED  - Biedron, Sandra
ED  - Simakov, Evgenya
ED  - Milton, Stephen
ED  - Anisimov, Petr M.
ED  - Schaa, Volker R.W.
TI  - Analysis of Resonant Converter Topology for High-Voltage Modulators
J2  - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022
CY  - Albuquerque, NM, USA
T2  - International Particle Accelerator Conference
T3  - 5
LA  - english
AB  - At the Los Alamos Neutron Science Center (LANSCE), we are considering various topologies to replace obsolete charging supplies and capacitor banks that provide high-voltage direct-current (DC) power to the 44, 805-MHz klystron modulators that drive the LANSCE Coupled Cavity Linac (CCL). Among the possible replacement topologies is the High Voltage Converter Modulator (HVCM), originally designed at LANSCE for use at the Spallation Neutron Source (SNS), to be used as a pulsed high-voltage power supply for klystron-based RF transmitters. The HVCM topology uses high frequency transformers with resonant LC networks for efficient energy conversion and a frequency dependent gain, which permits the use of frequency modulation as a control variable to afford pulse flattening and excellent regulation as demonstrated at SNS. A mathematical analysis is presented that links the converter resonant tank components to the frequency dependent output behavior of the converter modulator.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 486
EP  - 489
KW  - resonance
KW  - high-voltage
KW  - operation
KW  - impedance
KW  - klystron
DA  - 2022/10
PY  - 2022
SN  - 2673-7000
SN  - 978-3-95450-232-5
DO  - doi:10.18429/JACoW-NAPAC2022-TUPA64
UR  - https://jacow.org/napac2022/papers/tupa64.pdf
ER  -