JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUXD3: Production Pathways for Medically Interesting Isotopes

@inproceedings{rosadodelrio:napac2022-tuxd3,
  author       = {L. Rosado Del Rio and L.F. Dabill and A. Hutton},
  title        = {{Production Pathways for Medically Interesting Isotopes}},
& booktitle    = {Proc. NAPAC'22},
  booktitle    = {Proc. 5th Int. Particle Accel. Conf. (NAPAC'22)},
  pages        = {271--273},
  eid          = {TUXD3},
  language     = {english},
  keywords     = {target, radiation, proton, neutron, isotope-production},
  venue        = {Albuquerque, NM, USA},
  series       = {International Particle Accelerator Conference},
  number       = {5},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2022},
  issn         = {2673-7000},
  isbn         = {978-3-95450-232-5},
  doi          = {10.18429/JACoW-NAPAC2022-TUXD3},
  url          = {https://jacow.org/napac2022/papers/tuxd3.pdf},
  abstract     = {{Radioisotopes are commonly used in nuclear medicine for treating cancer and new, more effective treatment options are always desired. As a result, there is a national need for new radioisotopes and ways to produce them. A computer program was created that evaluates the daughters for all known reactions of projectiles (gamma rays, protons or neutrons) with every stable target isotope by comparing the cross-sections for each reaction at a desired energy, and outputs a list of the potential daughter isotopes that are most likely to be generated. The program then evaluates the decay chains of these daughters to provide a list of the possible decay chains that contain the radioisotope of interest. By knowing the daughter production and decay chain for each isotope, it is possible to go from the desired radioisotope to the stable isotope that can be used as a target for its production. This project would facilitate the search for new pathways to creating useful theranostic isotopes.}},
}