JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for WEPA10: Determination of LCLS-II Gun-2 Prototype Dimensions

TY  - CONF
AU  - Xiao, L.
AU  - Adolphsen, C.
AU  - Jongewaard, E.N.
AU  - Liu, X.
AU  - Zhou, F.
ED  - Biedron, Sandra
ED  - Simakov, Evgenya
ED  - Milton, Stephen
ED  - Anisimov, Petr M.
ED  - Schaa, Volker R.W.
TI  - Determination of LCLS-II Gun-2 Prototype Dimensions
J2  - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022
CY  - Albuquerque, NM, USA
T2  - International Particle Accelerator Conference
T3  - 5
LA  - english
AB  - The LCLS-II spare gun (Gun-2) design is largely based on the existing LCLS-II gun (Gun-1), in which there is significant captured dark current (DC) that originates on the high field copper surface near the cathode plug gap opening. To help suppress DC, the Gun-2 cathode and anode noses and the cathode plug opening are elliptically shaped to minimize the peak surface field for a given cathode gradient. Stainless steel (SS) cathode and anode inserts are used in Gun-2 to further reduce dark current. The RF simulations were performed using a model that includes all the 3D features. The thermal and structural analyses were done to investigate the effects of the air pressure and RF heating. The multi-physics simulation results provided the information needed to compute the overall frequency change from the basic 2D model to the nominal frequency during operation. The Gun-2 cathode-to-anode gap distance will be made 1 mm longer than the nominal gap with the expectation that less than 1 mm will be machined off to meet the target frequency. In this paper, the Gun-2 frequency correction calculations are presented, and the cathode-to-anode gap determination is discussed.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 637
EP  - 639
KW  - gun
KW  - cavity
KW  - cathode
KW  - simulation
KW  - vacuum
DA  - 2022/10
PY  - 2022
SN  - 2673-7000
SN  - 978-3-95450-232-5
DO  - doi:10.18429/JACoW-NAPAC2022-WEPA10
UR  - https://jacow.org/napac2022/papers/wepa10.pdf
ER  -