JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WEPA23: SRF Cavity Instability Detection with Machine Learning at CEBAF

@inproceedings{turner:napac2022-wepa23,
  author       = {D.L. Turner and R. Bachimanchi and A. Carpenter and J. Latshaw and C. Tennant and L.S. Vidyaratne},
  title        = {{SRF Cavity Instability Detection with Machine Learning at CEBAF}},
& booktitle    = {Proc. NAPAC'22},
  booktitle    = {Proc. 5th Int. Particle Accel. Conf. (NAPAC'22)},
  pages        = {669--671},
  eid          = {WEPA23},
  language     = {english},
  keywords     = {cavity, EPICS, SRF, linac, controls},
  venue        = {Albuquerque, NM, USA},
  series       = {International Particle Accelerator Conference},
  number       = {5},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2022},
  issn         = {2673-7000},
  isbn         = {978-3-95450-232-5},
  doi          = {10.18429/JACoW-NAPAC2022-WEPA23},
  url          = {https://jacow.org/napac2022/papers/wepa23.pdf},
  abstract     = {{During the operation of CEBAF, one or more unstable superconducting radio-frequency (SRF) cavities often cause beam loss trips while the unstable cavities themselves do not necessarily trip off. Identifying an unstable cavity out of the hundreds of cavities installed at CEBAF is difficult and time-consuming. The present RF controls for the legacy cavities report at only 1 Hz, which is too slow to detect fast transient instabilities. A fast data acquisition system for the legacy SRF cavities is being developed which samples and reports at 5 kHz to allow for detection of transients. A prototype chassis has been installed and tested in CEBAF. An autoencoder based machine learning model is being developed to identify anomalous SRF cavity behavior. The model is presently being trained on the slow (1 Hz) data that is currently available, and a separate model will be developed and trained using the fast (5 kHz) DAQ data once it becomes available. This paper will discuss the present status of the new fast data acquisition system and results of testing the prototype chassis. This paper will also detail the initial performance metrics of the autoencoder model.}},
}