JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for WEPA56: Encapsulation of Photocathodes Using High Power Pulsed RF Sputtering of hBN

TY  - CONF
AU  - Liu, A.
AU  - Biswas, J.P.
AU  - Callahan, J.R.
AU  - Gaowei, M.
AU  - Poddar, S.
ED  - Biedron, Sandra
ED  - Simakov, Evgenya
ED  - Milton, Stephen
ED  - Anisimov, Petr M.
ED  - Schaa, Volker R.W.
TI  - Encapsulation of Photocathodes Using High Power Pulsed RF Sputtering of hBN
J2  - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022
CY  - Albuquerque, NM, USA
T2  - International Particle Accelerator Conference
T3  - 5
LA  - english
AB  - Photocathodes of various materials are used in photoinjectors for generating photoelectron beams. Of particular interest are the alkali antimonides because of their ultra-high quantum efficiency (QE) and relatively low requirements for growth, and metallic materials such as Cu and Mg which have lower QE but are easier to maintain and have longer lifetime. The biggest challenge of using the alkali antimonide photocathode is that it has an extremely stringent requirement on vacuum and is destroyed rapidly by residual air in the system, while exposure of Mg and Cu in air also impacts the photocathode performance because of the oxidation. The photocathode can be protected against harmful gas molecules by using one or two monolayers of a 2D material such as graphene or hexagonal boron nitride (hBN). Furthermore, hBN monolayers even have the potential to improve the QE of the photocathode when working as the encapsulation thin-film. In this paper, we will discuss the feasibility of coating a photocathode with hBN by high power pulsed RF sputtering by using metallic photocathodes as examples, and compare the performance with encapsulated photocathodes with transferred hBN thin-films.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 760
EP  - 763
KW  - cathode
KW  - simulation
KW  - electron
KW  - vacuum
KW  - ion-effects
DA  - 2022/10
PY  - 2022
SN  - 2673-7000
SN  - 978-3-95450-232-5
DO  - doi:10.18429/JACoW-NAPAC2022-WEPA56
UR  - https://jacow.org/napac2022/papers/wepa56.pdf
ER  -