TY - CONF AU - Diaz Cruz, J.A. AU - Jacobson, B.T. AU - Neveu, N.R. AU - Sikora, J.P. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - Commissioning of HOM Detectors in the First Cryomodule of the LCLS-II Linac J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - Long-range wakefields (LRWs) may cause emittance dilution effects. LWRs are especially unwanted at facilities with low emittance beams like the LCLS-II at SLAC. Dipolar higher-order modes (HOMs) are a set of LRWs that are excited by off-axis beams. Two 4-channel HOM detectors were built to measure the beam-induced HOM signals for TESLA-type superconducting RF (SRF) cavities; they were tested at the Fermilab Accelerator Science and Technology (FAST) facility and are now installed at SLAC. The HOM detectors were designed to investigate LRW effects on the beam and to help with beam alignment. This paper presents preliminary results of HOM measurements at the first cryomodule (CM01) of the LCLS-II linac and describes the relevant hardware and setup of the experiment. PB - JACoW Publishing CP - Geneva, Switzerland SP - 69 EP - 71 KW - HOM KW - cavity KW - MMI KW - alignment KW - cryomodule DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-MOPA12 UR - https://jacow.org/napac2022/papers/mopa12.pdf ER - TY - CONF AU - Sosa Guitron, S.I. AU - Biedron, S. AU - Bolin, T.B. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - Design of a Surrogate Model for MUED at BNL Using VSim, Elegant and HPC J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - The MeV Ultrafast Electron Diffraction (MUED) instrument at Brookhaven National Laboratory is a unique capability for material science. As part of a plan to make MUED a high-throughput user facility, we are exploring instrumentation developments based on Machine Learning (ML). We are developing a surrogate model of MUED that can be used to support control tasks. The surrogate model will be based on beam simulations that are benchmarked to experimental observations. We use VSim to model the beam dynamics of the radio-frequency gun and Elegant to transport the beam through the rest of the beam-line. We also use High Performance Computing resources from Argonne Leadership Computing Facility to generate the data for the surrogate model based on the original simulation as well as training the ML model. PB - JACoW Publishing CP - Geneva, Switzerland SP - 72 EP - 74 KW - simulation KW - gun KW - electron KW - detector KW - laser DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-MOPA13 UR - https://jacow.org/napac2022/papers/mopa13.pdf ER - TY - CONF AU - Brown, K.A. AU - Aslam, A. AU - Biedron, S. AU - Bolin, T.B. AU - Gonzalez-Zacarias, C. AU - Huang, B. AU - Robertazzi, T.G. AU - Sosa Guitron, S.I. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - Coulomb Crystals in Storage Rings for Quantum Information Science J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - Quantum information science is a growing field that promises to take computing into a new age of higher performance and larger scale computing as well as being capable of solving problems classical computers are incapable of solving. The outstanding issue in practical quantum computing today is scaling up the system while maintaining interconnectivity of the qubits and low error rates in qubit operations to be able to implement error correction and fault-tolerant operations. Trapped ion qubits offer long coherence times that allow error correction. However, error correction algorithms require large numbers of qubits to work properly. We can potentially create many thousands (or more) of qubits with long coherence states in a storage ring. For example, a circular radio-frequency quadrupole, which acts as a large circular ion trap and could enable larger scale quantum computing. Such a Storage Ring Quantum Computer (SRQC) would be a scalable and fault tolerant quantum information system, composed of qubits with very long coherence lifetimes. PB - JACoW Publishing CP - Geneva, Switzerland SP - 296 EP - 301 KW - laser KW - storage-ring KW - controls KW - rfq KW - operation DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-TUYE1 UR - https://jacow.org/napac2022/papers/tuye1.pdf ER - TY - CONF AU - Aslam, A. AU - Babzien, M. AU - Biedron, S. ED - Biedron, Sandra ED - Simakov, Evgenya ED - Milton, Stephen ED - Anisimov, Petr M. ED - Schaa, Volker R.W. TI - Applications of Machine Learning in Photo-Cathode Injectors J2 - Proc. of NAPAC2022, Albuquerque, NM, USA, 07-12 August 2022 CY - Albuquerque, NM, USA T2 - International Particle Accelerator Conference T3 - 5 LA - english AB - To configure a photoinjector to reproduce a given electron bunch with the desired characteristics, it is necessary to adjust the operating parameters with high precision. More or less, the fine tunability of the laser parameters are of extreme importance as we try to model further applications of the photoinjector. The laser pulse incident on the photocathode critically affects the electron bunch 3D phase space. Parameters such as the laser pulse transverse shape, total energy, and temporal profile must be controlled independently, any laser pulse variation over both short and long-time scales also requires correction. The ability to produce arbitrary laser intensity distributions enables better control of electron bunch transverse and longitudinal emittance by affecting the space-charge forces throughout the bunch. In an accelerator employing a photoinjector, electron optics in the beamline downstream are used to transport, manipulate, and characterize the electron bunch. The adjustment of the electron optics to achieve a desired electron bunch at the interaction point is a much better understood problem than laser adjustment, so this research emphasizes laser shaping. PB - JACoW Publishing CP - Geneva, Switzerland SP - 441 EP - 442 KW - laser KW - electron KW - controls KW - cathode KW - network DA - 2022/10 PY - 2022 SN - 2673-7000 SN - 978-3-95450-232-5 DO - doi:10.18429/JACoW-NAPAC2022-TUPA41 UR - https://jacow.org/napac2022/papers/tupa41.pdf ER -