Author: Babzien, M.
Paper Title Page
MOZE6
Fulfilling the Mission of Brookhaven ATF as a DOE Flagship User Facility in Accelerator Stewardship  
 
  • I. Pogorelsky, M. Babzien, M.G. Fedurin, R. Kupfer, M.A. Palmer, M.N. Polyanskiy
    BNL, Upton, New York, USA
  • N. Vafaei-Najafabadi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is funded by the U.S. Department of Energy under contract DE-SC0012704
Over last three decades, BNL Accelerator Test Facility (ATF) pioneered the concept of a proposal-based user facility for lasers and electron beam-driven advanced accelerator research (AAR). This has made ATF an internationally recognized destination for researchers who benefit from access to unique scientific capabilities not otherwise available to individual institutions and businesses. Operating as an Office of Science National User Facility and a flagship DOE facility in Accelerator R&D Stewardship, ATF pursues an ambitious upgrade plan for its lasers and electron beam infrastructure to enable experiments at the forefront of the AAR. In this talk, we will present our path towards attaining a novel multi-terawatt sub-picosecond regime with a long-wave IR 9-um laser. Future enhancements to the electron beam and near-IR laser capabilities will also be presented. The combination of linac- and laser-driven e-beams will empower a unique state-of-the-art science program. This includes integrated multi-beam research in laser wakefield accelerators, such as the two-color ionization injection, with the promise of an all-optical scheme for generating collider-quality electrons beams.
 
slides icon Slides MOZE6 [6.929 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA41 Applications of Machine Learning in Photo-Cathode Injectors 441
 
  • A. Aslam
    UNM-ECE, Albuquerque, USA
  • M. Babzien
    BNL, Upton, New York, USA
  • S. Biedron
    Element Aero, Chicago, USA
 
  To configure a photoinjector to reproduce a given electron bunch with the desired characteristics, it is necessary to adjust the operating parameters with high precision. More or less, the fine tunability of the laser parameters are of extreme importance as we try to model further applications of the photoinjector. The laser pulse incident on the photocathode critically affects the electron bunch 3D phase space. Parameters such as the laser pulse transverse shape, total energy, and temporal profile must be controlled independently, any laser pulse variation over both short and long-time scales also requires correction. The ability to produce arbitrary laser intensity distributions enables better control of electron bunch transverse and longitudinal emittance by affecting the space-charge forces throughout the bunch. In an accelerator employing a photoinjector, electron optics in the beamline downstream are used to transport, manipulate, and characterize the electron bunch. The adjustment of the electron optics to achieve a desired electron bunch at the interaction point is a much better understood problem than laser adjustment, so this research emphasizes laser shaping.  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-TUPA41  
About • Received ※ 30 July 2022 — Revised ※ 12 August 2022 — Accepted ※ 13 August 2022 — Issue date ※ 07 September 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZE6
Characterization of the Fields Inside the CO2-Laser-Driven Wakefield Accelerators Using Relativistic Electron Beams  
 
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, M.A. Palmer, I. Pogorelsky, M.N. Polyanskiy
    BNL, Upton, New York, USA
  • M. Downer, R. Zgadzaj
    The University of Texas at Austin, Austin, Texas, USA
  • A.S. Gaikwad, V. Litvinenko, N. Vafaei-Najafabadi
    Stony Brook University, Stony Brook, USA
  • C. Joshi, W.B. Mori, C. Zhang
    UCLA, Los Angeles, California, USA
  • R. Kupfer
    LLNL, Livermore, USA
  • V. Samulyak
    SBU, Stony Brook, USA
 
  The CO2 laser at the Accelerator Test Facility of Brookhaven National Laboratory is a unique source generating 2-ps-long, multi-TW pulses in the mid-IR regime. This rapidly evolving system opens an opportunity for the generation of large bubbles in low-density plasmas (~1016 cm-3) that are ideal for acceleration of externally injected electron beams. A new generation of diagnostic tools is needed to characterize the fields inside such structures and to improve the means of external injection. In recent years, the electron beam probing technique has shown to be successful in direct visualization of the plasma wakefields. Here we present a new method utilizing the electron beam probing and Transmission Electron Microscopy (TEM) grids that will allow us to selectively illuminate different portions of the wake and to characterize the electric field strength within the wake based on the location of the focal point of the probe beamlets. The analytical evaluation of the approach and supporting simulation results will be presented and discussed.  
slides icon Slides WEZE6 [4.719 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)