Paper | Title | Page |
---|---|---|
MOPA17 | Symplectic Particle Tracking in a Thick Nonlinear McMillan Lens for the Fermilab Integrable Optics Test Accelerator (IOTA) | 83 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The McMillan system is a novel method to increase the tune spread of a beam without decreasing its dynamic aperture due to the system’s integrability. While the ideal system is based on an infinitely thin kick, the physical design requires a thick electron lens, including a solenoid. Particle transport through the lens is difficult to simulate due to the nature of the force on the circulating beam. This paper demonstrates accurate simulation of a thick McMillan lens in a solenoid using symplectic integrators derived from Yoshida’s method. |
||
Poster MOPA17 [2.290 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-MOPA17 | |
About • | Received ※ 03 August 2022 — Revised ※ 04 August 2022 — Accepted ※ 09 August 2022 — Issue date ※ 09 October 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYE6 | Thermionic Sources for Electron Cooling at IOTA | 588 |
|
||
We are planning a new electron cooling experiment at the Integrable Optics Test Accelerator (IOTA) at Fermilab for cooling ~2.5 MeV protons in the presence of intense space-charge. Here we present the simulations and design of a thermionic electron source for cooling at IOTA. We particularly discuss parameters of the thermionic source electrodes, as well as the simulation results. We also present a new electron source test-stand at the University of Chicago, which will be used to test the new thermionic electron source, as well as other electron sources. In addition, we discuss results from analyzing the test stand operations with a currently existing electron source. Furthermore, we present future steps for the test stand as well as production and commissioning of the thermionic source at IOTA. | ||
Slides WEYE6 [3.182 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEYE6 | |
About • | Received ※ 02 August 2022 — Revised ※ 07 August 2022 — Accepted ※ 08 August 2022 — Issue date ※ 28 August 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |