Author: Chae, H.U.
Paper Title Page
WEPA65 On-Chip Photonics Integrated Photocathodes 773
 
  • A.H. Kachwala, O. Chubenko, S.S. Karkare
    Arizona State University, Tempe, USA
  • R. Ahsan
    USC, Los Angeles, California, USA
  • H.U. Chae, R. Kapadia
    University of Southern California, Los Angeles, California, USA
 
  Funding: This work is supported by the NSF Center for Bright Beams under award PHY-1549132, and by the Department of Energy, Office of Science under awards DE-SC0021092, and DE-SC0021213.
Photonics integrated photocathodes can result in advanced electron sources for various accelerator applications. In such photocathodes, light can be directed using waveguides and other photonic components on the substrate underneath a photoemissive film to generate electron emission from specific locations at sub-micron scales and at specific times at 100-femtosecond scales along with triggering novel photoemission mechanisms resulting in brighter electron beams and enabling unprecedented spatio-temporal shaping of the emitted electrons. In this work we have demonstrated photoemission confined in the transverse direction using a nanofabricated Si3N4 waveguide underneath a 40-nm thick cesiated GaAs photoemissive film, thus demonstrating a proof of principle feasibility of such photonics integrated photocathodes. This work paves the way to integrate the advances in the field of photonics and nanofabrication with photocathodes to develop better electron sources.
 
poster icon Poster WEPA65 [0.642 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-NAPAC2022-WEPA65  
About • Received ※ 26 July 2022 — Revised ※ 06 August 2022 — Accepted ※ 07 August 2022 — Issue date ※ 10 August 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)